Rev 397 | Blame | Compare with Previous | Last modification | View Log | RSS feed
#!/usr/bin/env python
__author__ = "Ira W. Snyder (devel@irasnyder.com)"
__copyright__ = "Copyright (c) 2006 Ira W. Snyder (devel@irasnyder.com)"
__license__ = "GNU GPL v2 (or, at your option, any later version)"
# 1) Put the start node N0 on OPEN. Create G with just this node
# 2) Create the list CLOSED which is empty
#
# LOOP:
#
# 3) If OPEN is empty, exit with FAILURE
# 4) Select the first node from OPEN, put it on CLOSED. Call this N
# 5) If N is a goal node, exit successfully with the solution in G
# 6) Generate M from the children of N
# 7) Add anything not in M not in (CLOSED union OPEN) to OPEN
# 8) Reorder OPEN appropriately
# 9) goto LOOP
from PyCompat import * # fixes for school computers
from PuzzlePiece import PuzzlePiece
from Graph import Graph
if have_yapgvb():
import yapgvb
class SearchResult (object):
"""Class to store a search result"""
def __init__ (self, completed, status, depth_reached, nodes_created, result_graph):
self.completed = completed
self.status = status
self.depth_reached = depth_reached
self.nodes_created = nodes_created
self.result_graph = result_graph
self.search_name = None
def __repr__ (self):
"""Turn myself into a string"""
answer = '%s -- Reached Depth: %s -- Nodes Created: %s' % \
(self.status, self.depth_reached, self.nodes_created)
if self.search_name:
answer = self.search_name + '\n' + answer
return answer
def set_search_name (self, name):
self.search_name = name
class PuzzleSearch (object):
"""Implements a graph search"""
def __init__ (self, start_node, goal_nodes):
"""Constructor.
start_node: the node to start at (must have a get_children() function)
goal_nodes: a list of nodes to end at"""
self.__start_node = start_node
self.__goal_nodes = goal_nodes
def __find_nearest_child (self, children, already_visited):
"""Find the child that we came from. This necessitates that
the list already_visited be sorted in the order of nodes visited"""
for n in reversed(already_visited):
if n in children:
return n
# This should never happen
raise ValueError
def search (self, add_function, MAX_NODES_CREATED=100):
# Create the result graph
result = Graph ()
firsttime = True
counter = 0
OPEN = [self.__start_node]
CLOSED = []
while OPEN:
N = OPEN.pop(0)
CLOSED.append (N)
# Find all possible next paths
M = N.get_children()
###############################################################
# Add the current place to the result graph
result.add_vertex (str(N), str(counter), raw_obj=N)
if not firsttime:
v1 = str(N)
v2 = str(self.__find_nearest_child (M, CLOSED))
result.add_edge (v1, v2)
result.set_edge_color (v1, v2, yapgvb.colors.red)
result.set_edge_label (v1, v2, str(counter))
else:
# Set start node shape to be a double circle
result.set_vertex_shape (str(N), yapgvb.shapes.doublecircle)
firsttime = False
###############################################################
# Check if we've reached the goal
if N in self.__goal_nodes:
# Set the goal node's shape to be a diamond
result.set_vertex_shape (str(N), yapgvb.shapes.diamond)
# Create the return result
search_result = SearchResult (completed=True,
status='Success',
depth_reached=N.depth,
nodes_created=len(OPEN)+len(CLOSED),
result_graph=result)
return search_result
# Add the children of N (aka M) to OPEN
OPEN = add_function (M, OPEN, CLOSED)
counter += 1
# Check to make sure we don't loop for too long
if (len(OPEN) + len(CLOSED)) > MAX_NODES_CREATED:
search_result = SearchResult (completed=False,
status='FAILURE -- Max nodes exceeded',
depth_reached=N.depth,
nodes_created=len(OPEN)+len(CLOSED),
result_graph=None)
return search_result
search_result = SearchResult (completed=False,
status='FAILURE -- goal not found',
depth_reached=N.depth,
nodes_created=len(OPEN)+len(CLOSED),
result_graph=None)
return search_result
################################################################################
### Specific Search Algorithms
################################################################################
def add_bfs (M, OPEN, CLOSED):
for node in M:
if (node not in OPEN) and (node not in CLOSED):
OPEN.append (node)
return OPEN
def add_dfs (M, OPEN, CLOSED):
for node in M:
if (node not in OPEN) and (node not in CLOSED):
OPEN.insert (0, node) # insert node at beginning
return OPEN
def best_first_generic (M, OPEN, CLOSED, heuristic_func):
newopen = []
for node in M:
if (node not in OPEN) and (node not in CLOSED):
OPEN.append (node)
for node in OPEN:
heuristic = heuristic_func (node)
newopen.append ((heuristic, node))
newopen.sort ()
return [n[1] for n in newopen]
def bfs_oop (M, OPEN, CLOSED):
return best_first_generic (M, OPEN, CLOSED, lambda x: x.num_out_of_place ())
def bfs_dfc (M, OPEN, CLOSED):
return best_first_generic (M, OPEN, CLOSED, lambda x: x.total_distance_from_correct ())
def astar_bfs (M, OPEN, CLOSED):
return best_first_generic (M, OPEN, CLOSED, lambda x: x.depth)
def astar_oop (M, OPEN, CLOSED):
return best_first_generic (M, OPEN, CLOSED,
lambda x: x.depth + x.num_out_of_place ())
def astar_dfc (M, OPEN, CLOSED):
return best_first_generic (M, OPEN, CLOSED,
lambda x: x.depth + x.total_distance_from_correct ())
from Graph import Graph
from DrawGraph import DrawGraph
import random
def get_nth_child (start, n):
child = start
for i in xrange(n):
child = random.choice(child.get_children())
return child
def main ():
initial = [1, 2, 3, 4, 'E', 5, 6, 7, 8]
start = PuzzlePiece (initial) # temporary use!
goal = get_nth_child (start, 20)
start = PuzzlePiece (initial, 0, goal)
s = PuzzleSearch (start, (goal, ))
# Run some tests
result = s.search (add_dfs, 1000)
result.set_search_name ('Depth First Search')
print result
result = s.search (add_bfs, 1000)
result.set_search_name ('Breadth First Search: normal')
print result
result = s.search (bfs_oop, 1000)
result.set_search_name ('Best First Search: Out-of-place')
print result
result = s.search (astar_bfs, 1000)
result.set_search_name ('A*-search: Breadth-first-search')
print result
result = s.search (astar_oop, 1000)
result.set_search_name ('A*-search: Out-of-place')
print result
result = s.search (astar_dfc, 1000)
result.set_search_name ('A*-search: Distance-from-correct')
print result
if result.result_graph != None:
if have_yapgvb():
DrawGraph ('result', result.result_graph).render_graphviz ('res.svg', yapgvb.engines.dot)
DrawGraph ('result', result.result_graph).render_stupid ('generated_by')
else:
print 'Failed to render graph'
if __name__ == '__main__':
main ()