Subversion Repositories programming

Rev

Rev 206 | Blame | Compare with Previous | Last modification | View Log | RSS feed

/**
 * Copyright 2006, Ira W. Snyder (devel@irasnyder.com)
 * License: GNU General Public License v2 (or, at your option, any later
 * version)
 */

/**
 * Name: Ira Snyder
 * Class: CS365 - Computer Architecture
 * Project #1 - Part 2
 * Due: 2006-02-06
 */

/**
 * File: MUL4.v
 * Purpose: Implementation of a 4-bit multiplier.
 *
 * A 4-bit multiplier, following the algorithm from
 * Pg. 179, Figure 3.7 of the book Computer Organization and Design by
 * Patterson and Hennessey.
 */

// This controls the multiplication unit.
module MUL4_CONTROL (prod_in, alu_op, write_op, shift_op, clk, ctr);

    input prod_in, clk;
    input[0:3] ctr;
    output[0:1] alu_op;
    output write_op, shift_op;

    // Only trigger at the negative edge of the clock. We should stay constant
    // in all other cases.
    always @(negedge clk) begin
        // If we have a "low enough" counter, set the correct
        // operations based on the input of the last bit in the product
        // register.
        //
        // If the counter is out of range, then don't do anything, since we
        // want to give the hardware some time to accept new values, for the
        // next multiplication operation.
        if (ctr <= 4) begin
            force write_op = prod_in;
            force shift_op = 'b1;
            force alu_op = 'b10;
        end else begin
            release write_op;
            release shift_op;
            release alu_op;
        end
    end

endmodule

// This stores the "right" mutiplying number until it changes.
module MUL4_MULTIPLICAND (in, out, clk);

    input[0:3] in;
    output[0:3] out;
    input clk;

    reg[0:3] value;

    // Only change the value stored in this
    // register when the input changes.
    always @(in) begin
        value = in;
    end

    assign out = value;

endmodule

// This stores the 8-bit product of the multiplication unit. It gets reset
// when it's right 4 bits change.
//
// It will write the value coming in on it's left4 input every negative edge
// of the clock, only if it is getting the write signal from the control unit.
// It will then shift the value if it is getting the shift operation from the
// control unit. Since we NEVER write without a shift, this implementation is
// safe.
module MUL4_PRODUCT (left4, right4, shift_op, write_op, out, clk);

    input[0:3] left4, right4;
    input shift_op, write_op, clk;
    output[0:7] out;

    // Storage register
    reg[0:7] value;

    // Reset the storage register whenever the leftmost multiplying number
    // changes.
    always @(right4) begin
        value[0:3] = 'b0000;
        value[4:7] = right4;
    end

    // Every time we get to the negative edge of the clock, we should check
    // and see if we need to WRITE + SHIFT, or just SHIFT, based on the
    // signals sent from the control unit.
    always @(negedge clk) begin
        if (shift_op == 1) begin
            if (write_op == 1) begin

                // Write the ALU's value into the left half of the register.
                value[0:3] = left4[0:3];
            end

            // Shift the register, since we got a shift signal. This is here
            // to make sure that we write FIRST, then shift SECOND.
            value = value >> 1;
        end
    end

    // Set the output to the new value in the storage register.
    assign out = value;

endmodule

// The actual multiplier unit. It takes 10 "$time" units from when you give
// the inputs until the output is set correctly.
module MUL4 (a, b, out);

    input[0:3] a, b;
    output[0:7] out;

    reg[0:3] counter;
    reg clk;

    // Set initial variable values
    initial begin
        clk = 'b0;
        counter ='b0000;
        cin = 'b0;
    end

    // Clock generator
    always begin
        #1 clk = ~clk;
    end

    // Increment the counter at the negative edge of the clock
    always @(negedge clk) begin
        counter = counter + 'b1;
    end

    /* //DEBUGGING INFORMATION
    initial begin
        $monitor ("time=%0d counter=%b clk=%b w_mout=%b w_prod=%b w_aop=%b w_sop=%b w_wop=%b out=%b",
               $time, counter, clk, w_mout, w_prod, w_aop, w_sop, w_wop, out);
    end
    */

    wire[0:7] w_prod;
    wire[0:3] w_mout, w_alu_out;
    wire[0:1] w_aop;
    wire w_sop, w_wop, w_cout;
    reg cin;

    MUL4_PRODUCT mp (w_alu_out, a, w_sop, w_wop, w_prod, clk);
    MUL4_MULTIPLICAND mm (b, w_mout, clk);
    MUL4_CONTROL mc (w_prod[7], w_aop, w_wop, w_sop, clk, counter);
    ALU4 ma (w_prod[0:3], w_mout, cin, w_aop, w_cout, w_alu_out);

    // Set the output, since we have a valid result right now.
    // Also reset the counter every time it reaches 4, it is used
    // to keep the MUL4_CONTROL in sync.
    always @(counter) begin
        if (counter == 4) begin
            force out = w_prod; // set the output
            counter = 'b1111;   // reset counter
        end else begin
            release out;
        end
    end

endmodule