
CS 352 — Winter 2005

G:\352\exercises 01-29.doc 1 / 17

EXERCISES 01-29
This handout presents a series of exercises for CS 352. Each will be assigned when
appropriate.

In general, each requires the following deliverables:

• a printout of the code file — document as appropriate

• hardcopy of assigned & appropriate test runs

Problems may also specify other or further requirements.

WARNING — for the moment
Do not use global variables unless they are truly required.
(Don’t use setf inside functions.)

Do not use local variables. (Don’t use let or do.)

Do not use if. Use cond instead.

Do not use nested ifs. Use cond instead.

Regarding the Prolog exercises: I may have inadvertently selected function names
which are reserved words. You can recover from my error by slightly changing the
name.

Exercise 1.

Create a file containing the QUAD1 function from class:
(defun QUAD1 (A B C)
 (/ (+ (- B) (sqrt (- (* B B) (* 4 A C))))
 (* 2 A))
)

Use the following as test cases:
(QUAD1 1 2 1)

(QUAD1 1 -2 1)

(QUAD1 1 -2 -3)

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 2 / 17

Exercise 2.

Write the Common Lisp function QUAD2 which takes in the A, B, C of the quadratic
formula and returns a list of the two roots given by the standard formula.

Use the following as test cases:

(QUAD2 1 2 -8) → (2 -4)

(QUAD2 1 -2 1) → (1 1)

Exercise 3.

Write a Common Lisp function QUAD3 which takes in the A, B, C of a quadratic
equation and returns a list of all its real roots.

Use the following as test cases:

 (QUAD3 1 -1 -6) → (3 -2)

 (QUAD3 1 2 1) → (-1)

 (QUAD3 5 1 3) → nil

 (QUAD3 0 4 5) → (-1.25)1

 (QUAD3 0 0 3) → nil2

 (QUAD3 0 0 0) → nil3

Assume that all the arguments are numeric.

Note that the superscripts (1, 2, 3) are references to footnotes. They are not meant to be
part of your output.

Document any helper functions that you use.

1 Note that this set of coefficients corresponds to the linear equation 4X+5=0,

which has solution X=-1.25. Hence, QUAD3 returns (-1.25)
2 Note that this set of coefficients corresponds to the impossible equation 3=0.

Clearly, no value of X can make this equation true, so QUAD3 returns nil, a list of
the values of X which make the equation true.

3 Note that this set of coefficients corresponds to the tautology 0=0. Technically,
this means that X is indeterminate, since any value of X makes the tautology true.
Let's just have QUAD3 return NIL in this case.

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 3 / 17

Exercise 4.

Consider polynomials in the variable x.

Write and demonstrate the function write-term, which takes the coefficient and
exponent of a term and writes it out appropriately. For example,
 (write-term –3 5)

results in the printing (side-effect) of
 5

 -3x

Obviously, you need to print this with a fixed-width font.

There may also be a result from the function write-term, but that’s ok.

Test your function using the driver supplied by the instructor.

 Turn in:

• printout of your code file

• hardcopy of the test run

Exercise 4a.

We can represent a polynomial in X by giving a list of its terms in the form (coef
exp).

For example, 523 2 +− xx would be represented as ((3 2)(-2 1)(5 0)).

Polynomial Normal Form — PNF — obeys the following rules:

(1) Terms are sorted from lowest to highest exponent. For example, we want
((5 0)(-2 1)(3 2)) instead of ((3 2)(-2 1)(5 0)).

(2) Terms with 0 coefficient are omitted.
We want ((1 2)) instead of ((0 1)(1 2)).
We want nil instead of ((0 1)(0 2)).

(3) Only one term occurs for any exponent.
We want ((5 1)) instead of ((2 1)(3 1)).

Write a function PNF which takes a polynomial and returns its representation in
Polynomial Normal Form.

Test your code by running the driver given on the website.

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 4 / 17

Exercise 5.

Consider polynomials in one variable, x. These will be lists of the monomials we
explored in an earlier exercise. Thus, if (3 2) represents the term 23x and (-1 0)
represents the term ,11 0 −=− x then the list ((3 2)(-1 0)) stands for the polynomial .13 2 −x

Here are some examples:

math notation internal representation printed output form
0 nil 0

0 ((0 0)) or ((0 1)) or … 0

12 +x ((2 1)(1 0)) 2 x + 1

13 2 −x ((3 2)(-1 0)) 2
3 x - 1

145 2 +− xx ((5 2)(-4 1)(1 0)) 2
5 x – 4 x + 1

xxxx 7397 2314 +−+ ((7 14)(9 3)(-3 2)(7 1))
 14 3 2
7 x + 9 x - 3 x + 7

Write a Common Lisp function write-poly, which takes an internal representation of a
polynomial and produces the appropriate printed output form.

The following Lisp functions may be useful: format, reverse, …

Beyond general instructions, turn in hardcopy of at least the test cases shown above.

Note: In a future exercise, we may continue using polynomials. We haven’t yet
examined canonical forms, simplification, or arithmetic.

Put my test cases first in your printout.

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 5 / 17

Exercise 6.

Write the recursive function AL1 which takes two lists of integers and returns a list of
integers in which each element is the sum of the corresponding elements of the incoming
lists. For example,

(AL1 ’(3 1 4) ’(8 2 5)) → (11 3 9)

The lists need not be equal in length; the shorter list should be treated as though it were
padded out with zeros at the end. For example,

(AL1 ’(3 1 4) ’(2 2)) → (5 3 4)

(AL1 ’(3 1 4) nil) → (3 1 4)

Exercise 7.

Write the recursive function INTERSECT which takes two sets of integers

and returns the intersection of the two sets. By set, I mean a list which contains no
duplicates. For example,

(intersect ’(4 1 2) ’(2 5 3 1 7)) → (1 2)

(intersect ’(4 1 2) nil) → nil

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 6 / 17

Exercise 8.

Write a recursive function FIBP which takes a list of integers and determines whether or
not the numbers in the list have the Fibonacci property:

L1 is arbitrary.

L2 is arbitrary.

LN = LN-1 + LN-2.

FIBP should return nil only if its argument violates the Fibonacci property. Thus, any list
of length 0 or 1 or 2 possesses the Fibonacci property.

For example,
(fibp nil) → t

(fibp ’(7)) → t

(fibp ’(7 3)) → t

(fibp ’(1 1 2 3 5 8)) → t

(fibp ’(7 3 10 13 23)) → t

(fibp ’(1 2 3 4 5)) → nil

Exercise 9.

Write a recursive function SETIFY which takes a list and converts it into a set. For
example,

(setify nil) → nil

(setify ’(18)) → (18)

(setify ’(3 1 4 1)) → (3 4 1)

(setify ’(a b b c a b b)) → (c a b)

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 7 / 17

Exercise 10.

Write a recursive function COUNT# which takes an arbitrary S-expression and returns the
number of numbers which are found in the expression, at any depth or nesting. For
example,

(count# nil) → 0

(count# 3) → 1

(count# ’a) → 0

(count# ’(5 1 a 4)) → 3

(count# ’((1 1 (a)) 7 (b (3)))) → 4

If the argument is non-atomic, then your function will need to examine both the car and
cdr of the argument.

Exercise 11.

We have seen that every iteration can be written as a tail recursion. Use tail recursion to
implement a function NONE (that’s N-O-N-E) which takes a list of integers and returns a
2-element list: the first element is the number of odd elements and the second element is
the number of even elements in the argument. For example,

(none nil) → (0 0)

(none ’(3)) → (1 0)

(none ’(2)) → (0 1)

(none ’(3 1 4 1 5)) → (4 1)

Draw the flowchart for the iterative function, and show me where you’ve broken it into a
main function and a helper function.

Exercise 12.

Write a Lisp function TABLE which takes two arguments, LO and HI, and prints out a
three-column table with the following properties:

• column 1 contains the integers LO through HI;

• column 2 contains the square of the integer in column 1;

• column 3 contains the cube of the integer in column 1.

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 8 / 17

Exercise 13.

Consider the function NONE which you wrote recursively in Exercise 6.

Write a non-recursive version of NONE which uses do.

Exercise 14.

Write a Lisp macro zero which takes a variable name and sets that variable to be zero.

For example,

x → error: variable X has no value
(zero x)

x → 0
(setq y 5)

y → 5
(zero y)

y → 0

Before giving me the code, you must show me some examples of input code and the code
into which it is transformed. See Exercise 16 for an example.

Exercise 15.

Write a Lisp macro zero* which takes zero or more variable names and sets those
variables to zero.

For example,

x → error: variable X has no value
(zero* x)

x → 0
(setq x 3)
(setq y 5)

x → 3

y → 5
(zero* x y)

x → 0

y → 0
Before giving me the code, you must show me some examples of input code and the code
into which it is transformed. See Exercise 16 for an example.

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 9 / 17

Exercise 15a.

Write a Lisp macro INC* which takes zero or more variable names and increments those
variables by 1.

(1) Before giving me the code, you must show me some hand examples of input code
and the code into which it is transformed.

(2) Give the code for your macro.

(3) Prove that your macro works by using macroexpand-1 on each of your i/o
examples.

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 10 / 17

Exercise 16.

Suppose we want to create a for macro in Lisp with the syntax

(for <var> <lo> <hi> <exp1> ... <expN>)

A typical use might be
> (for I 1 4 (format t "~%~s ~s" I (* I I)))

1 1

2 4

3 9

4 16

nil

A for expression always returns NIL, although it may have many side effects.

Note that a for expression may contain any number of statements in its body.

Show the code you want produced when each of the following for expressions is
macroexpanded:

1. (for I 1 4 (print I))

2. (for I 1 100 (print I) (setq X I) (bar))

Write the Lisp code which implements the for macro.

Test your code on the following examples:
(for I 1 4 (print I))

(for X 2 7 (print X) (print (* X X)))

(for I 1 10 (format t "~%~s ~s" I (* I I)))

(defun SUM (N)

 (let ((OUT 0))

 (for J 1 N (setq OUT (+ OUT J)))

 OUT

))

(SUM 100)

Turn in:

your written answers to questions 1 and 2 above;

hardcopy of your code working on the examples described above;

hardcopy of your code.

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 11 / 17

Exercise 17.

Write a Lisp function op-some which uses functional arguments to implement the op-
some schema. The form of a call to op-some is this:

(op-some condition operation arg).

For example, we might use op-some to implement the function sq-odd, which takes a list
of integers and returns another list in which only the odd numbers have been squared:

(op-some #’oddp #’sq nil) → nil

(op-some #’oddp #’sq ’(2)) → (2)

(op-some #’oddp #’sq ’(3)) → (9)

(op-some #’oddp #’sq ’(3 6 4 5 2)) → (9 6 4 25 2)

Of course, we will have to write the function sq which takes a number and returns its
square.

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 12 / 17

Exercise 18.

In this exercise, we will write a small helper function which might be used by an expert
system to match patterns against facts. The function is called MPF, which stands for
Match Pattern & Fact.

Here are some definitions you need:

• A variable is a symbol whose print-name begins with a question mark ("?"). For
example: ?X, ?AMT, ?2. You should write a predicate varp which tells if
something is a variable.

• A constant is any other atom.

• A fact is a list of constants.

• A pattern is a list of constants and variables.

MPF takes two arguments, a pattern and a fact, both of which are lists. The function
begins like this:

 (defun MPF (P F) ...)

It returns one of three things:

(1) NIL means there was no match between the pattern and the fact. For example,
 (mpf '(mammal ?x) '(john is a student)) → nil

 (mpf '(mammal ?x) '(mammal rodent octopus)) → nil

 (mpf '(mammal ?x) '(eats-meat leopard)) → nil

 (mpf '(a b c) '(a e c)) → nil

(2) A list of pairs, meaning that the fact matches the pattern with the indicated
correspondence of variables & values. Each pair is a two-element list: the first
element is a variable; the second is its value (the thing it matches in the fact). For
example,
(mpf '(mammal ?x) (mammal bozo)) → ((?x bozo))

(mpf '(?x is a ?y) '(john is a student))

 → ((?x john) (?y student))

(mpf '(?x ?y) '(a b)) → ((?x a) (?y b))

(mpf '(?x ?x) '(a a)) → ((?x a))

(3) T means there was a match between the pattern and the fact, but no variables
were involved.
(mpf '(a b c) '(a b c)) → t

(mpf '(method 1) '(method 1)) → t

Write the function MPF and any helper functions you require.

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 13 / 17

Document any helper functions you write: use a comment to tell what the function does,
how it does it, and give some examples. You will not receive full credit if I can't
understand your helper functions.

Put all your code into a single file. Put your name in a comment at the beginning of the
file.

Test the completed function on the following test cases:
(MPF '(MAMMAL ?X) '(MAMMAL BOZO))

(MPF '(MAMMAL ?X) '(JOHN OWES MARY 10))

(MPF '(MAMMAL ?X) '(BIRD TWEETY))

(MPF '(COLOR ?X BROWN) '(COLOR SPOT BROWN))

(MPF '(COLOR ?X BROWN) '(COLOR FIDO RED))

(MPF '(?X IS A ?Y) '(JOHN IS A STUDENT))

(MPF '(A) '(A))

(MPF '(A) '(B))

(MPF '(A) '(MAMMAL BOZO))

(MPF '(A B C) '(A B C))

(MPF '(LOVES ?X ?Y) '(LOVES JOHN PHYSICS))

(MPF '(LOVES ?X ?Y) '(LOVES JOHN JOHN))

(MPF '(LOVES ?X ?Y) '(LOVES JOHN NIL))

(MPF '(?X OWES ?Y ?AMT) '(JOHN OWES MARY 10))

(MPF '(?X OWES ?Y ?AMT) '(MAMMAL BOZO))

(MPF '(?X ?X) '(A A))

(MPF '(?X ?X) '(A B))

(MPF '(?X ?Y ?X) '(A B A))

(MPF '(?X ?Y ?X) '(A B C))

I may have sent you an email containing these test cases.

Turn in:

a printout of the file containing your function definitions;

a printout showing its performance on the required test cases.

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 14 / 17

Exercise 19.

Write the Prolog code which computes the member function. For example:

member(a,[b,a,c]). yes

member(a,[b,b,c]). no

member(a,[]). no

Does it work for the following?
member(X,[a,b,c]).

Exercise 20.

Write the Prolog code which determines if a list consists entirely of atoms.

For example, if the predicate were called aa (for “all atoms”), we might expect behavior
like this:

aa([]) → yes

aa([a,b,c]) → yes

aa([a,2,c]) → yes

aa([a,[b],c]) → no

Exercise 21.

Write the Prolog code which returns the last element of a list.

For example:
last(X,[a,b,c]). X = c

last(X,[a,[b,c]]). X = [b,c]

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 15 / 17

Exercise 22.

Write a Prolog function inc/2 which computes or verifies that two lists are related
because the elements of the second list are all incremented by one from the elements of
the first list. For example:

inc([1,7,5],[2,8,6]). yes

inc([1,7,5],X). X = [2,8,6]

inc([],X). X = []

Can it solve the following?
inc(X,[2,8,6]).

Exercise 23.

Write the Prolog code which generates the squares of the natural numbers. For example:

sq(X). → X=0; X=1; X=4; X=9; X=16; ...

Exercise 24.

Write the Prolog code which computes factorials. For example:

fac(0,N). → N=1

fac(5,N). → N=120

What does it do in the following cases?
fac(0,1).

fac(0,5).

fac(4,18).

fac(X,1).

fac(X,6).

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 16 / 17

Exercise 25.

Write the Prolog code which adds two equal-length lists, element by element. For
example:

addl([],[],L). → L=[]

addl([3,1,4],[2,7,1],L). → L=[5,8,5]

Can it solve the following problems?
addl(X,[2,7,1],[5,8,5]).

addl([3,1,4],X,[5,8,5]).

Exercise 26.

Write the Prolog code which computes the mem1 function, which determines whether a
given atom occurs at any level of a given expression. For example:

mem1(a,[b,a,c]) → yes

mem1(a,[b,[a],c]) → yes

mem1(a,[d,e]) no

Exercise 27.

Write sose/3 which computes the sum of the odd and even elements in a list of
integers. For example:

sose([3,1,4,6,3,2],SO,SE) → SO=7 , SE=12

Exercise 28.

Write rev/2 which reverses a list. For example:

rev([a,b,c],X) X=[c,b,a]

rev([],X) X=[]

Does your function work in the other direction?
rev(X,[a,b,c]) X=[c,b,a]

rev(X,[]) X=[]

CS 352 — Winter 2005

G:\352\exercises 01-29.doc 17 / 17

Exercise 29.

Consider the inverted pyramid below.

Write the Prolog code which places the numbers 1 through 10 into the blanks such that
any number is the absolute value of the difference of the two numbers “directly” above it.

For example,
1 9

8

or
7 5

2

are legal sub-pyramids because 918 −= and 572 −= , but

1 9

5

is not, because 915 −≠ .

Remember, each of the numbers {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} should occur once and only
once in the pyramid.

____ ____ ____ ____

____ ____ ____

____ ____
