Rev 168 | Rev 170 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
/* Copyright: Ira W. Snyder* Start Date: 2005-11-28* End Date:* License: Public Domain** Changelog Follows:* 2005-11-28* - Implement eval_euler() and eval_trapezoid().** 2005-11-29* - Implement eval_romberg() and eval_simpson().**/#include <cmath>#include <cstdlib>#include <cstdio>#include <iostream>using namespace std;/*** The function given in the Project #5 Handout.* This is 1 + x^28** @param x the point at which to evaluate the function*/float func (float x){return 1.0 + pow (x, 28);}/*** Evaluate the integral of the function given, over the interval given,* using the Euler method.** @param a the lower bound of the integral* @param b the upper bound of the integral* @param n the number of intervals to use* @param f the function to evaluate*/float eval_euler (const float a, const float b, const int n, float(*f)(float)){const float h = (b - a) / n;float answer = 0.0, xi = 0.0;int i = 0;for (i=0; i<=n; i++){xi = a + (i * h);answer += f(xi);}return h * answer;}/*** Evaluate the integral of the function given, over the interval given,* using the trapezoid method.** @param a the lower bound of the integral* @param b the upper bound of the integral* @param n the number of intervals to use* @param f the function to evaluate*/float eval_trapezoid (const float a, const float b, const int n, float(*f)(float)){const float h = (b - a) / n;float answer = 0.0, xi_last = 0.0, xi_now = 0.0;int i = 0;xi_last = a + (i * h); // i = 0 herefor (i=1; i<=n; i++){xi_now = a + (i * h);answer += (f (xi_last) + f (xi_now) * (xi_now - xi_last));xi_last = xi_now; // shift xi's}return answer;}/*** Evaluate the integral of the function given, over the interval given,* using the Romberg method.** This is directly based on the pseudocode on Pg 223-224 of the textbook.** @param a the lower bound of the integral* @param b the upper bound of the integral* @param n the number of intervals to use* @param f the function to evaluate*/float eval_romberg (const float a, const float b, const int n, float(*f)(float)){float R[n+1][n+1];int i, j, k;float h, sum;h = b - a;R[0][0] = (h/2.0) * (f(a) + f(b));for (i=1; i<=n; i++){h = h/2.0;sum = 0.0;for (k=1; k<=(pow(2.0, i) - 1); k+=2)sum = sum + f(a + k * h);R[i][0] = (1.0/2.0) * R[i-1][0] + sum * h;for (j=1; j<=i; j++)R[i][j] = R[i][j-1] + (R[i][j-1] - R[i-1][j-1]) / (pow(4.0, j) - 1);}return R[n][n];}/*** Evaluate the integral of the function given, over the interval given,* using the Simpson method.** This is derived from the formula on Pg 237-238** @param a the lower bound of the integral* @param b the upper bound of the integral* @param n the number of intervals to use* @param f the function to evaluate*/float eval_simpson (const float a, const float b, const int n, float(*f)(float)){const float h = (b - a) / n;float sum1=0.0, sum2=0.0;int i;/* Get the first sum in the formula on Pg 238 */for (i=1, sum1=0.0; i<=n/2; i++)sum1 += f (a + (2 * i - 1) * h);sum1 *= 4;/* Get the second sum in the formula on Pg 238 */for (i=1, sum2=0.0; i<=(n-2)/2; i++)sum2 += f (a + 2 * i * h);sum2 *= 2;/* Add it all together, and return it */return (h / 3.0) * ((f(a) + f(b)) + sum1 + sum2);}int main (void){const float a = 0.0;const float b = 3.0;int n = 0;return 0;}