Rev 155 | Rev 157 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
/* Copyright: Ira W. Snyder* Start Date: 2005-11-13* End Date: 2005-11-13* License: Public Domain** Changelog Follows:** 2005-11-13* - Implemented Functions 1-3 from the Project #3 Handout.* - Implemented Algorithm 7 (LaGrange) from Notes Set #3.* - Implemented Algorithm 8-9 (Newton Divided Diff) from Notes Set #3.* - Implemented GenEvenPts() which will generate evenly spaced points.* - Implemented GenChebychevPts() which will generate Chebychev points.**/#include <cstdio>#include <cmath>using namespace std;#define X_MIN = -5.0#define X_MAX = 5.0/*** Function #1 from the Project #3 Handout.** @param x the place to calculate the value of this function* @return the value of the function at x*/double func1 (double x){return 1.0 / (1.0 + pow(x, 2));}/*** Function #2 from the Project #3 Handout.** @param x the place to calculate the value of this function* @return the value of the function at x*/double func2 (double x){// NOTE: M_E is the value of e defined by the math.h headerreturn (pow(M_E, x) + pow(M_E, -x)) / 2.0;}/*** Function #3 from the Project #3 Handout.** @param x the place to calculate the value of this function* @return the value of the function at x*/double func3 (double x){return pow(x, 14) + pow(x, 10) + pow(x, 4) + x + 1;}/*** Find the value of the LaGrange Interpolating Polynomial at a point.** @param x the x[i] values* @param y the y[i] values* @param n the number of points* @param point the point to evaluate at* @return the value of the Interpolating Poly at point*/double LaGrangeMethod (double *x, double *y, int n, double point){double value = 0;double term = 0;int i, j;for (i=0; i<n; i++){term = y[i];for (j=0; j<n; j++)if (i != j)term *= (point - x[j])/(x[i] - x[j]);value += term;}return value;}/*** Find the value of the Newton Interpolating Polynomial at a point.* The a[i]'s are found using a divided difference table.** @param x the x[i] values* @param y the y[i] values* @param n the number of points* @param point the point to evaluate at* @return the value of the Interpolating Poly at point*/double NewtonMethod (double *x, double *y, int n, double point){int i, j;double a[n];for (i=0; i<n; i++)a[i] = y[i];for (i=1; i<n; i++)for (j=n-1; j>=i; j--)a[j] = (a[j] - a[j-1]) / (x[j] - x[j-i]);// At this point, all of the a[i]'s have been calculated,// using a Divided Difference Table.double xterm = 1.0;double value = 0.0;for (i=0; i<n; i++){value += a[i] * xterm;xterm *= (point - x[i]);}return value;}/*** Generate evenly spaced points for the function given.* The algorithm is taken from the Project #3 Handout.** @param num_pts the number of points* @param *func the function that you want to use to find y[i]* @param x[] the array that will hold the x[i] values* @param y[] the array that will hold the y[i] values*/void GenEvenPts (int num_pts, double(*func)(double), double x[], double y[]){int i;double h = 10.0 / (double)(num_pts-1);double xtemp = -5.0;for (i=0; i<num_pts; i++){x[i] = xtemp;y[i] = func(x[i]);xtemp += h;}}/*** Generate Chebychev points for the function given.* The algorithm is taken from the Project #3 Handout.** @param num_pts the number of points* @param *func the function that you want to use to find y[i]* @param x[] the array that will hold the x[i] values* @param y[] the array that will hold the y[i] values*/void GenChebychevPts (int num_pts, double(*func)(double), double x[], double y[]){int i;for (i=0; i<num_pts; i++){x[i] = -5.0 * cos((float)i * M_PI / (float)(num_pts-1));y[i] = func(x[i]);}}int main (void){const int size = 11;double x[size];double y[size];double point = 2.0;//GenEvenPts (size, &func1, x, y);GenChebychevPts (size, &func1, x, y);for (int i=0; i<size; i++)printf("x[%d] = %e -- y[%d] = %e\n", i, x[i], i, y[i]);printf ("LaGrange = %e\n", LaGrangeMethod(x, y, size, point));printf ("Newton = %e\n", NewtonMethod(x, y, size, point));return 0;}