Rev 155 | Rev 157 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
/* Copyright: Ira W. Snyder
* Start Date: 2005-11-13
* End Date: 2005-11-13
* License: Public Domain
*
* Changelog Follows:
*
* 2005-11-13
* - Implemented Functions 1-3 from the Project #3 Handout.
* - Implemented Algorithm 7 (LaGrange) from Notes Set #3.
* - Implemented Algorithm 8-9 (Newton Divided Diff) from Notes Set #3.
* - Implemented GenEvenPts() which will generate evenly spaced points.
* - Implemented GenChebychevPts() which will generate Chebychev points.
*
*/
#include <cstdio>
#include <cmath>
using namespace std;
#define X_MIN = -5.0
#define X_MAX = 5.0
/**
* Function #1 from the Project #3 Handout.
*
* @param x the place to calculate the value of this function
* @return the value of the function at x
*/
double func1 (double x)
{
return 1.0 / (1.0 + pow(x, 2));
}
/**
* Function #2 from the Project #3 Handout.
*
* @param x the place to calculate the value of this function
* @return the value of the function at x
*/
double func2 (double x)
{
// NOTE: M_E is the value of e defined by the math.h header
return (pow(M_E, x) + pow(M_E, -x)) / 2.0;
}
/**
* Function #3 from the Project #3 Handout.
*
* @param x the place to calculate the value of this function
* @return the value of the function at x
*/
double func3 (double x)
{
return pow(x, 14) + pow(x, 10) + pow(x, 4) + x + 1;
}
/**
* Find the value of the LaGrange Interpolating Polynomial at a point.
*
* @param x the x[i] values
* @param y the y[i] values
* @param n the number of points
* @param point the point to evaluate at
* @return the value of the Interpolating Poly at point
*/
double LaGrangeMethod (double *x, double *y, int n, double point)
{
double value = 0;
double term = 0;
int i, j;
for (i=0; i<n; i++)
{
term = y[i];
for (j=0; j<n; j++)
if (i != j)
term *= (point - x[j])/(x[i] - x[j]);
value += term;
}
return value;
}
/**
* Find the value of the Newton Interpolating Polynomial at a point.
* The a[i]'s are found using a divided difference table.
*
* @param x the x[i] values
* @param y the y[i] values
* @param n the number of points
* @param point the point to evaluate at
* @return the value of the Interpolating Poly at point
*/
double NewtonMethod (double *x, double *y, int n, double point)
{
int i, j;
double a[n];
for (i=0; i<n; i++)
a[i] = y[i];
for (i=1; i<n; i++)
for (j=n-1; j>=i; j--)
a[j] = (a[j] - a[j-1]) / (x[j] - x[j-i]);
// At this point, all of the a[i]'s have been calculated,
// using a Divided Difference Table.
double xterm = 1.0;
double value = 0.0;
for (i=0; i<n; i++)
{
value += a[i] * xterm;
xterm *= (point - x[i]);
}
return value;
}
/**
* Generate evenly spaced points for the function given.
* The algorithm is taken from the Project #3 Handout.
*
* @param num_pts the number of points
* @param *func the function that you want to use to find y[i]
* @param x[] the array that will hold the x[i] values
* @param y[] the array that will hold the y[i] values
*/
void GenEvenPts (int num_pts, double(*func)(double), double x[], double y[])
{
int i;
double h = 10.0 / (double)(num_pts-1);
double xtemp = -5.0;
for (i=0; i<num_pts; i++)
{
x[i] = xtemp;
y[i] = func(x[i]);
xtemp += h;
}
}
/**
* Generate Chebychev points for the function given.
* The algorithm is taken from the Project #3 Handout.
*
* @param num_pts the number of points
* @param *func the function that you want to use to find y[i]
* @param x[] the array that will hold the x[i] values
* @param y[] the array that will hold the y[i] values
*/
void GenChebychevPts (int num_pts, double(*func)(double), double x[], double y[])
{
int i;
for (i=0; i<num_pts; i++)
{
x[i] = -5.0 * cos((float)i * M_PI / (float)(num_pts-1));
y[i] = func(x[i]);
}
}
int main (void)
{
const int size = 11;
double x[size];
double y[size];
double point = 2.0;
//GenEvenPts (size, &func1, x, y);
GenChebychevPts (size, &func1, x, y);
for (int i=0; i<size; i++)
printf("x[%d] = %e -- y[%d] = %e\n", i, x[i], i, y[i]);
printf ("LaGrange = %e\n", LaGrangeMethod(x, y, size, point));
printf ("Newton = %e\n", NewtonMethod(x, y, size, point));
return 0;
}