Rev 155 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
/* Copyright: Ira W. Snyder
* Start Date: 2005-11-13
* End Date: 2005-11-13
* License: Public Domain
*
* Changelog Follows:
*
* 2005-11-13
* - Implemented Functions 1-3 from the Project #3 Handout.
* - Implemented Algorithm 7 (LaGrange) from Notes Set #3.
* - Implemented Algorithm 8-9 (Newton Divided Diff) from Notes Set #3.
*
*/
#include <cstdio>
#include <cmath>
using namespace std;
#define X_MIN = -5.0
#define X_MAX = 5.0
double func1 (double x)
{
return 1.0 / (1.0 + pow(x, 2));
}
double func2 (double x)
{
// NOTE: M_E is the value of e defined by the math.h header
return (pow(M_E, x) + pow(M_E, -x)) / 2.0;
}
double func3 (double x)
{
return pow(x, 14) + pow(x, 10) + pow(x, 4) + x + 1;
}
double LaGrangeMethod (double *x, double *y, int n, double point)
{
double value = 0;
double term = 0;
int i, j;
for (i=0; i<n; i++)
{
term = y[i];
for (j=0; j<n; j++)
{
if (i != j)
term *= (point - x[j])/(x[i] - x[j]);
}
value += term;
}
return value;
}
double NewtonMethod (double *x, double *y, int n, double point)
{
int i, j;
double a[n];
for (i=0; i<n; i++)
a[i] = y[i];
for (i=1; i<n; i++)
for (j=n-1; j>=i; j--)
a[j] = (a[j] - a[j-1]) / (x[j] - x[j-i]);
// At this point, all of the a[i]'s have been calculated,
// using a Divided Difference Table.
double xterm = 1.0;
double value = 0.0;
for (i=0; i<n; i++)
{
value += a[i] * xterm;
xterm *= (point - x[i]);
}
return value;
}
int main (void)
{
double x[] = {-2, -1, 0, 2, 3};
double y[] = {15, -3, -5, 15, 85};
int size = 5;
double point = 2.0;
printf ("LaGrange = %e\n", LaGrangeMethod(x, y, size, point));
printf ("Newton = %e\n", NewtonMethod(x, y, size, point));
return 0;
}