Rev 145 | Rev 147 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
#include <iostream>#include <iomanip>#include <cmath>using namespace std;enum {IDX0, IDX1, IDX5, IDX10, IDX15, IDX19, IDX20};#define ARRAY_SIZE 21float x1_const[7] = { 1.266065978, 5.651591040E-01, 2.714631560E-04,2.752948040E-10, 2.370463051E-17, 1.587678369E-23,3.966835986E-25 };float x2_const[7] = { 2.279585302, 1.590636855, 9.825679323E-03,3.016963879E-07, 8.139432531E-13, 8.641603385E-18,4.310560576E-19 };float x5_const[7] = { 2.723987182E+01, 2.433564214E+01, 2.157974547,4.580044419E-03, 1.047977675E-6 , 4.078415017E-10,5.024239358E-11 };/* Find the Bessel Function.* Algorithm: I[n+1](x) = I[n-1](x) - (2*n/x) * I[n](x)* Which is equvalent to: I[n](x) = I[n-2](x) - (2 * (n-1)/x) * I[n-1](x)* by simple substitution.** This is the recurrence relation for PART #1.*/float Bessel_BottomUp (int n, float x, float *constants){int i = 0;float answer;float *storage = new float[ARRAY_SIZE];// Prime the arraystorage[0] = constants[IDX0];storage[1] = constants[IDX1];// Calculate each value in turnfor (i=2; i<=20; i++)storage[i] = storage[i-2] - (2.0 * (n-1) / x) * storage[i-1];// Store the answer, delete the memoryanswer = storage[n];delete[] storage;// Return the resultreturn answer;}/* Find the Bessel Function, from the Top -> Down.* Algorithm: I[n-1](x) = (2*n/x)*I[n](x) + I[n+1](x)* Which is equivalent to: I[n](x) = (2 * (n+1) / x) * I[n+1](x) + I[n+2](x)* by simple substitution.** This is the recurrence relation for PART #2.*/float Bessel_TopDown (int n, float x, float *constants){int i = 18;float answer;float *storage = new float[ARRAY_SIZE];// Prime the arraystorage[20] = constants[IDX20];storage[19] = constants[IDX19];// Calculate each value in turnfor (i=18; i>=0; i--)storage[i] = (2.0 * (n+1) / x) * storage[i+1] + storage[i+2];// Store the answer, free the memoryanswer = storage[n];delete[] storage;// Return the resultreturn answer;}/* Print out a table for a given x value, and function.* Call like this: print_table (1.0, &BesselFunc);** It chooses the correct constants appropriately.*/void print_table (float x, float (*bessel_func)(int, float, float*)){int n;float true_val, calc_val, abs_err, rel_err;float *constants;if (x == 1.0) constants = x1_const;if (x == 2.0) constants = x2_const;if (x == 5.0) constants = x5_const;// Set the output flagscout << setiosflags (ios_base::scientific | ios_base::showpoint);// A line of equal signsfor (n=0; n<(20+20+20+20+10); n++)cout << "=";cout << endl;// Print the x value we're usingcout << "Using x = " << x << endl;// Print the table headercout << setw(10) << "n Val."<< setw(20) << "TRUE"<< setw(20) << "COMPUTED"<< setw(20) << "ABS ERROR"<< setw(20) << "REL ERROR"<< endl;// A line of equal signsfor (n=0; n<(20+20+20+20+10); n++)cout << "=";cout << endl;// Run once for n = 5,10,15,20for (n=5; n<=20; n+=5){if (n==5 ) true_val = constants[IDX5];if (n==10) true_val = constants[IDX10];if (n==15) true_val = constants[IDX15];if (n==20) true_val = constants[IDX20];calc_val = bessel_func(n, x, constants);abs_err = abs (true_val - calc_val);rel_err = abs_err / abs (true_val);cout << setw(10) << n<< setw(20) << true_val<< setw(20) << calc_val<< setw(20) << abs_err<< setw(20) << rel_err<< endl;}cout << endl;}int main (void){print_table (1.0, &Bessel_BottomUp);print_table (2.0, &Bessel_BottomUp);print_table (5.0, &Bessel_BottomUp);cout << endl << endl;print_table (1.0, &Bessel_TopDown);print_table (2.0, &Bessel_TopDown);print_table (5.0, &Bessel_TopDown);return 0;}