Rev 146 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
// Global Variables
enum {IDX0, IDX1, IDX5, IDX10, IDX15, IDX19, IDX20}; // Constants' Indices
float x1_const[7] = { 1.266065978, 5.651591040E-01, 2.714631560E-04,
2.752948040E-10, 2.370463051E-17, 1.587678369E-23,
3.966835986E-25 };
float x2_const[7] = { 2.279585302, 1.590636855, 9.825679323E-03,
3.016963879E-07, 8.139432531E-13, 8.641603385E-18,
4.310560576E-19 };
float x5_const[7] = { 2.723987182E+01, 2.433564214E+01, 2.157974547,
4.580044419E-03, 1.047977675E-6 , 4.078415017E-10,
5.024239358E-11 };
// Global Defines
#define ARRAY_SIZE 21
// Function Prototypes
float Bessel_BottomUp (int n, float x, float *constants);
float Bessel_TopDown (int n, float x, float *constants);
void print_table_bottomup (float x);
void print_table_topdown (float x);
void print_equals (int num);
/* Find the Bessel Function.
* Algorithm: I[n+1](x) = I[n-1](x) - (2*n/x) * I[n](x)
* Which is equvalent to: I[n](x) = I[n-2](x) - (2 * (n-1)/x) * I[n-1](x)
* by simple substitution.
*
* This is the recurrence relation for PART #1.
*/
float Bessel_BottomUp (int n, float x, float *constants)
{
int i = 0;
float answer;
float *storage = new float[ARRAY_SIZE];
// Prime the array
storage[0] = constants[IDX0];
storage[1] = constants[IDX1];
// Calculate each value in turn
for (i=2; i<=n; i++)
storage[i] = storage[i-2] - (2.0 * (n-1) / x) * storage[i-1];
// Store the answer, delete the memory
answer = storage[n];
delete[] storage;
// Return the result
return answer;
}
/* Find the Bessel Function, from the Top -> Down.
* Algorithm: I[n-1](x) = (2*n/x)*I[n](x) + I[n+1](x)
* Which is equivalent to: I[n](x) = (2 * (n+1) / x) * I[n+1](x) + I[n+2](x)
* by simple substitution.
*
* This is the recurrence relation for PART #2.
*/
float Bessel_TopDown (int n, float x, float *constants)
{
int i = 18;
float answer;
float *storage = new float[ARRAY_SIZE];
// Prime the array
storage[20] = constants[IDX20];
storage[19] = constants[IDX19];
// Calculate each value in turn
for (i=18; i>=n; i--)
storage[i] = (2.0 * (n+1) / x) * storage[i+1] + storage[i+2];
// Store the answer, free the memory
answer = storage[n];
delete[] storage;
// Return the result
return answer;
}
/* Print out a table for a given x value, and function.
* Call like this: print_table (1.0, &BesselFunc);
*
* It chooses the correct constants appropriately.
*/
void print_table_bottomup (float x)
{
int n, tblwidth = 6+16+16+16+16+16+20;
float true_val, calc_val, abs_err, rel_err, part1, part2;
float *constants;
if (x == 1.0) constants = x1_const;
if (x == 2.0) constants = x2_const;
if (x == 5.0) constants = x5_const;
// Reset the output flags
cout << resetiosflags (ios_base::scientific | ios_base::showpoint);
// A line of equal signs
print_equals (tblwidth);
// Print the x value we're using
cout << "Using x = " << x
<< " "
<< "Working Bottom-up" << endl;
// Set the output flags we're using
cout << setiosflags (ios_base::scientific | ios_base::showpoint);
// Print the table header
cout << setw(6) << "n Val."
<< setw(16) << "TRUE VAL"
<< setw(16) << "COMPUTED"
<< setw(16) << "ABS ERROR"
<< setw(16) << "REL ERROR"
<< setw(16) << "I[n-2](x)"
<< setw(20) << "(2(n-1)/x)I[n-1](x)"
<< setw(16) << "IraVal"
<< endl;
// A line of equal signs
print_equals (tblwidth);
// Run once for n = 5,10,15,20
for (n=5; n<=20; n+=5)
{
if (n==5 ) true_val = constants[IDX5];
if (n==10) true_val = constants[IDX10];
if (n==15) true_val = constants[IDX15];
if (n==20) true_val = constants[IDX20];
calc_val = Bessel_BottomUp(n, x, constants);
abs_err = abs (true_val - calc_val);
rel_err = abs_err / abs (true_val);
part1 = Bessel_BottomUp(n-2, x, constants);
part2 = (2.0 * (n-1) / x) * Bessel_BottomUp(n-1, x, constants);
cout << setw(6) << n
<< setw(16) << true_val
<< setw(16) << calc_val
<< setw(16) << abs_err
<< setw(16) << rel_err
<< setw(16) << part1
<< setw(20) << part2
<< setw(16) << part1 - part2
<< endl;
}
cout << endl;
}
void print_table_topdown (float x)
{
int n, tblwidth = 6+16+16+16+16+16+20;
float true_val, calc_val, abs_err, rel_err, part1, part2;
float *constants;
bool done = false;
if (x == 1.0) constants = x1_const;
if (x == 2.0) constants = x2_const;
if (x == 5.0) constants = x5_const;
// Reset the output flags
cout << resetiosflags (ios_base::scientific | ios_base::showpoint);
// A line of equal signs
print_equals (tblwidth);
// Print the x value we're using
cout << "Using x = " << x
<< " "
<< "Working Top-down" << endl;
// Set the output flags we're using
cout << setiosflags (ios_base::scientific | ios_base::showpoint);
// Print the table header
cout << setw(6) << "n Val."
<< setw(16) << "TRUE VAL"
<< setw(16) << "COMPUTED"
<< setw(16) << "ABS ERROR"
<< setw(16) << "REL ERROR"
<< setw(16) << "I[n+2](x)"
<< setw(20) << "(2(n+1)/x)I[n+1](x)"
<< setw(16) << "IraVal"
<< endl;
// A line of equal signs
print_equals (tblwidth);
n = 0;
// Run once for n = 0,1,5,10,15
while (!done)
{
switch (n)
{
case 0: true_val = constants[IDX0]; break;
case 1: true_val = constants[IDX1]; break;
case 5: true_val = constants[IDX5]; break;
case 10: true_val = constants[IDX10]; break;
case 15: true_val = constants[IDX15]; break;
}
calc_val = Bessel_TopDown(n, x, constants);
abs_err = abs (true_val - calc_val);
rel_err = abs_err / abs (true_val);
part1 = Bessel_TopDown(n+2, x, constants);
part2 = (2.0 * (n+1) / x) * Bessel_TopDown(n+1, x, constants);
cout << setw(6) << n
<< setw(16) << true_val
<< setw(16) << calc_val
<< setw(16) << abs_err
<< setw(16) << rel_err
<< setw(16) << part1
<< setw(20) << part2
<< setw(16) << (part1 + part2)
<< endl;
switch (n) // Set n for the next loop
{
case 0: n = 1; break;
case 1: n = 5; break;
case 5: n = 10; break;
case 10: n = 15; break;
case 15: done = true; break;
}
}
cout << endl;
}
void print_equals (int num)
{
int i;
for (i=0; i<num; i++)
cout << "=";
cout << endl;
}
int main (void)
{
print_table_bottomup (1.0);
print_table_bottomup (2.0);
print_table_bottomup (5.0);
print_table_topdown (1.0);
print_table_topdown (2.0);
print_table_topdown (5.0);
return 0;
}