Rev 55 | Rev 100 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
// Written by Ira Snyder// Project #5import java.io.*;class SortMethods {// method to sort the array a (passed as a parameter)// this will sort in O(n^2) timepublic static void BubbleSort( Comparable[] a ) {//loop from the back of the array moving towards the beginningfor( int i=a.length-1; i>0; i-- )//loop from the beginning of the array to position "i"for( int j=0; j<i; j++ )//compare elements next to each other, and swap if necessaryif( a[j].compareTo(a[j+1]) > 0 ) Test.swap(a,j,j+1);}// method to sort the array a// this is the same as the regular bubble sort, but it ends// early if the array is sortedpublic static void ImprovedBubbleSort( Comparable[] a ) {boolean inorder=true;for( int i=a.length-1; i>0; i-- ) {inorder=true;for( int j=0; j<i; j++ )if( a[j].compareTo(a[j+1]) > 0 ) {Test.swap(a,j,j+1);inorder=false;}if(inorder) break; //array sorted, so bail out}}// method to sort the array a (passed as a paramter)// this will sort in O(n^2) timepublic static void SelectionSort( Comparable[] a ) {//loop from the back of the array moving towards the frontfor( int i=a.length-1; i>0; i-- ) {//placeholder for the maximum elementint m=0;//find the maximum element in the arrayfor( int j=1; j<=i; j++ )if( a[j].compareTo(a[m]) > 0 ) m = j;//swap the "i"th element with the maximum elementTest.swap(a,i,m);}}// method to sort the array a (passed as a parameter)// this will sort in O(n^2) timepublic static void InsertionSort( Comparable[] a ) {//iterate through the array from the beginning to the endfor ( int i=1; i<a.length; i++ ) {//store a[i] in a temp locationComparable ai = a[i];int j=i; //start for the inner loop//find the place to insert ai, and shift elements downfor ( j=i; j>0 && a[j-1].compareTo(ai) > 0; j-- ) {a[j] = a[j-1]; //shift downTest.incSwapCount();}//insert ai into position a[j]a[j] = ai; Test.incSwapCount();}}// an insertion sort that skips elements as it sortsprivate static void SkipInsertionSort( Comparable[] a, int c, int d ) {for( int i = c+d; i < a.length; i+=d ) {Comparable ai = a[i];int j = i;while( j > c && a[j-d].compareTo(ai) > 0 ) {a[j] = a[j-d]; Test.incSwapCount();j -= d;}a[j] = ai; Test.incSwapCount();}}// this sorts like a comb, with the interval shrinking as// we progress in the sortpublic static void ShellSort( Comparable[] a ) {for( int d = a.length/2; d > 0; d /= 2 )for( int c = 0; c < d; c++ )//applies Insertion sort to the skip sequenceSkipInsertionSort(a, c, d);}// sorts by breaking the array into small pieces, then sorting// the smaller lists in the same fashion until the small lists// are only length=1, which is sorted by defaultpublic static void MergeSort( Comparable[] a ) {//call the real mergesort on the whole arrayMergeSortHelper(a,0,a.length);}// PRECONDITION: 0 <= p <= q <= a.length// POSTCONDITION: a[p..q-1] is in ascending orderprivate static void MergeSortHelper( Comparable[] a, int p, int q ) {if (q-p < 2) return;int m = (p+q)/2;MergeSortHelper(a, p, m);MergeSortHelper(a, m, q);merge(a, p, m, q);}// PRECONDITIONS: a[p..m-1] and a[m..q-1] are in ascending order;// POSTCONDITION: a[p] <= a[p+1] <= ... <= a[q-1]private static void merge( Comparable[] a, int p, int m, int q ) {if( a[m-1].compareTo(a[m]) <= 0 ) return; // a[p..q-1] is already sortedint i = p, j = m, k = 0;Comparable[] aa = new Comparable[q-p];while (i < m && j < q)if( a[i].compareTo(a[j]) < 0 ) { aa[k++] = a[i++]; Test.incSwapCount(); }else { aa[k++] = a[j++]; Test.incSwapCount(); }if (i < m) {System.arraycopy(a, i, a, p+k, m-i); // shift a[i..m-1]Test.incSwapCount(m-i);}System.arraycopy(aa, 0, a, p, k); // copy aa[0..k-1] to a[p..p+k-1];Test.incSwapCount(k);}// PRECONDITION: 0 <= p <= q <= a.length// POSTCONDITION: a[p] <= a[p+1] <= ... <= a[q-1]public static void HeapSort( Comparable[] a ) {for( int i = (a.length-1)/2; i >= 0; i-- )heapify(a, i, a.length);for( int j = a.length-1; j > 0; j-- ) {Test.swap(a, 0, j);heapify(a, 0, j);}}//Postcondition: The array a is a Heapprivate static void heapify( Comparable[] a, int i, int n ) {Comparable ai = a[i];while( i < n/2 ) { // a[i] is not a leafint j = 2*i+1; // a[j] is ai¿s left childif( j+1 < n && a[j+1].compareTo(a[j]) > 0 ) ++j; // a[j] is ai's larger childif( a[j].compareTo(ai) <= 0 ) break; // a[j] is not out of ordera[i] = a[j]; // promote a[j]Test.incSwapCount();i = j; // move down to the next level}a[i] = ai; Test.incSwapCount();}//public static void QuickSort( Comparable[] a ) {//call the real quicksort with the needed parametersQuickSortHelper(a,0,a.length);}// PRECONDITION: 0 <= p <= q <= a.length// POSTCONDITION: a[p] <= a[p+1] <= ... <= a[q-1]private static void QuickSortHelper( Comparable[] a, int p, int q ) {if (q-p < 2) return;int j = partition(a, p, q);QuickSortHelper(a, p, j);QuickSortHelper(a, j+1, q);}// RETURNS: index j of pivot element a[j];// POSTCONDITION: a[i] <= a[j] <= a[k] for p <= i <= j <= k < q;private static int partition( Comparable[] a, int p, int q ) {Comparable pivot = a[p];int i = p, j = q;while( i < j ) {while( j > i && a[--j].compareTo(pivot) >= 0 ); // empty loopif( j > i ) { a[i] = a[j]; Test.incSwapCount(); }while( i < j && a[++i].compareTo(pivot) <= 0 ); // empty loopif( i < j ) { a[j] = a[i]; Test.incSwapCount(); }}a[j] = pivot; Test.incSwapCount();return j;}public static void arraySwap( Object[] a, int posA, int posB ) {Object temp = a[posB]; // temp = Ba[posB] = a[posA]; // B = Aa[posA] = temp; // A = temp}}