Rev 57 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
// Written by Ira Snyder
// Project #5
import java.io.*;
class SortMethods {
// method to sort the array a (passed as a parameter)
// this will sort in O(n^2) time
public static void BubbleSort( Comparable[] a ) {
//loop from the back of the array moving towards the beginning
for( int i=a.length-1; i>0; i-- )
//loop from the beginning of the array to position "i"
for( int j=0; j<i; j++ )
//compare elements next to each other, and swap if necessary
if( a[j].compareTo(a[j+1]) > 0 ) Test.swap(a,j,j+1);
}
// method to sort the array a
// this is the same as the regular bubble sort, but it ends
// early if the array is sorted
public static void ImprovedBubbleSort( Comparable[] a ) {
boolean inorder=true;
for( int i=a.length-1; i>0; i-- ) {
inorder=true;
for( int j=0; j<i; j++ )
if( a[j].compareTo(a[j+1]) > 0 ) {
Test.swap(a,j,j+1);
inorder=false;
}
if(inorder) break; //array sorted, so bail out
}
}
// method to sort the array a (passed as a paramter)
// this will sort in O(n^2) time
public static void SelectionSort( Comparable[] a ) {
//loop from the back of the array moving towards the front
for( int i=a.length-1; i>0; i-- ) {
//placeholder for the maximum element
int m=0;
//find the maximum element in the array
for( int j=1; j<=i; j++ )
if( a[j].compareTo(a[m]) > 0 ) m = j;
//swap the "i"th element with the maximum element
Test.swap(a,i,m);
}
}
// method to sort the array a (passed as a parameter)
// this will sort in O(n^2) time
public static void InsertionSort( Comparable[] a ) {
//iterate through the array from the beginning to the end
for ( int i=1; i<a.length; i++ ) {
//store a[i] in a temp location
Comparable ai = a[i];
int j=i; //start for the inner loop
//find the place to insert ai, and shift elements down
for ( j=i; j>0 && a[j-1].compareTo(ai) > 0; j-- ) {
a[j] = a[j-1]; //shift down
Test.incSwapCount();
}
//insert ai into position a[j]
a[j] = ai; Test.incSwapCount();
}
}
// an insertion sort that skips elements as it sorts
private static void SkipInsertionSort( Comparable[] a, int c, int d ) {
for( int i = c+d; i < a.length; i+=d ) {
Comparable ai = a[i];
int j = i;
while( j > c && a[j-d].compareTo(ai) > 0 ) {
a[j] = a[j-d]; Test.incSwapCount();
j -= d;
}
a[j] = ai; Test.incSwapCount();
}
}
// this sorts like a comb, with the interval shrinking as
// we progress in the sort
public static void ShellSort( Comparable[] a ) {
for( int d = a.length/2; d > 0; d /= 2 )
for( int c = 0; c < d; c++ )
//applies Insertion sort to the skip sequence
SkipInsertionSort(a, c, d);
}
// sorts by breaking the array into small pieces, then sorting
// the smaller lists in the same fashion until the small lists
// are only length=1, which is sorted by default
public static void MergeSort( Comparable[] a ) {
//call the real mergesort on the whole array
MergeSortHelper(a,0,a.length);
}
// PRECONDITION: 0 <= p <= q <= a.length
// POSTCONDITION: a[p..q-1] is in ascending order
private static void MergeSortHelper( Comparable[] a, int p, int q ) {
if (q-p < 2) return;
int m = (p+q)/2;
MergeSortHelper(a, p, m);
MergeSortHelper(a, m, q);
merge(a, p, m, q);
}
// PRECONDITIONS: a[p..m-1] and a[m..q-1] are in ascending order;
// POSTCONDITION: a[p] <= a[p+1] <= ... <= a[q-1]
private static void merge( Comparable[] a, int p, int m, int q ) {
if( a[m-1].compareTo(a[m]) <= 0 ) return; // a[p..q-1] is already sorted
int i = p, j = m, k = 0;
Comparable[] aa = new Comparable[q-p];
while (i < m && j < q)
if( a[i].compareTo(a[j]) < 0 ) { aa[k++] = a[i++]; Test.incSwapCount(); }
else { aa[k++] = a[j++]; Test.incSwapCount(); }
if (i < m) {
System.arraycopy(a, i, a, p+k, m-i); // shift a[i..m-1]
Test.incSwapCount(m-i);
}
System.arraycopy(aa, 0, a, p, k); // copy aa[0..k-1] to a[p..p+k-1];
Test.incSwapCount(k);
}
// PRECONDITION: 0 <= p <= q <= a.length
// POSTCONDITION: a[p] <= a[p+1] <= ... <= a[q-1]
public static void HeapSort( Comparable[] a ) {
for( int i = (a.length-1)/2; i >= 0; i-- )
heapify(a, i, a.length);
for( int j = a.length-1; j > 0; j-- ) {
Test.swap(a, 0, j);
heapify(a, 0, j);
}
}
//Postcondition: The array a is a Heap
private static void heapify( Comparable[] a, int i, int n ) {
Comparable ai = a[i];
while( i < n/2 ) { // a[i] is not a leaf
int j = 2*i+1; // a[j] is ai¿s left child
if( j+1 < n && a[j+1].compareTo(a[j]) > 0 ) ++j; // a[j] is ai's larger child
if( a[j].compareTo(ai) <= 0 ) break; // a[j] is not out of order
a[i] = a[j]; // promote a[j]
Test.incSwapCount();
i = j; // move down to the next level
}
a[i] = ai; Test.incSwapCount();
}
//
public static void QuickSort( Comparable[] a ) {
//call the real quicksort with the needed parameters
QuickSortHelper(a,0,a.length);
}
// PRECONDITION: 0 <= p <= q <= a.length
// POSTCONDITION: a[p] <= a[p+1] <= ... <= a[q-1]
private static void QuickSortHelper( Comparable[] a, int p, int q ) {
if (q-p < 2) return;
int j = partition(a, p, q);
QuickSortHelper(a, p, j);
QuickSortHelper(a, j+1, q);
}
// RETURNS: index j of pivot element a[j];
// POSTCONDITION: a[i] <= a[j] <= a[k] for p <= i <= j <= k < q;
private static int partition( Comparable[] a, int p, int q ) {
Comparable pivot = a[p];
int i = p, j = q;
while( i < j ) {
while( j > i && a[--j].compareTo(pivot) >= 0 )
; // empty loop
if( j > i ) { a[i] = a[j]; Test.incSwapCount(); }
while( i < j && a[++i].compareTo(pivot) <= 0 )
; // empty loop
if( i < j ) { a[j] = a[i]; Test.incSwapCount(); }
}
a[j] = pivot; Test.incSwapCount();
return j;
}
public static void arraySwap( Object[] a, int posA, int posB ) {
Object temp = a[posB]; // temp = B
a[posB] = a[posA]; // B = A
a[posA] = temp; // A = temp
}
}