Rev 32 | Blame | Last modification | View Log | RSS feed
// Written by Ira Snyder
// Due Date: 11-15-2004
// Project #3
import java.io.*;
import java.util.*;
class BinaryTree {
private Object root;
private BinaryTree left, right;
//constructors ----------------------------------------------------------
// constructor to create a singleton tree
// Precondition: root is a non-null Object
// Postcondition: returns a BinaryTree with the Object given as the root
// data, and null left and right subtrees
public BinaryTree( Object root ) {
this.root = root;
this.left = null;
this.right = null;
}
// constructor to create a BinaryTree with the given Object as the root
// data, and the given BinaryTrees as the left and right subtrees
// Precondition: root is a non-null Object (right and left CAN be null
// Postcondition: returns a BinaryTree with the given root data and
// the given left and right subtrees
public BinaryTree( Object root, BinaryTree left, BinaryTree right ) {
this.root = root;
this.left = left;
this.right = right;
}
// copy constructor, creates a tree which has the same structure and
// whose nodes reference the same objects as the _that_ tree
public BinaryTree( BinaryTree that ) {
System.out.println("Don't use me yet");
}
//getter methods --------------------------------------------------------
// method which returns the root data
// Precondition: none
// Postcondition: return the root data
public Object getRoot() { return root; }
// method which will return a reference to the left subtree
// Precondition: none
// Postcondition: returns a reference to the left subtree
public BinaryTree getLeft() { return left; }
// method which will return a reference to the right subtree
// Precondition: none
// Postcondition: returns a reference to the right subtree
public BinaryTree getRight() { return right; }
//setter methods --------------------------------------------------------
// method which updates the root data
// Precondition: root is non-null
// Postcondition: sets this.root to the new data, returns the old data
public Object setRoot( Object root ) {
Object temp = this.root;
this.root = root;
return temp;
}
// method which updates the left subtree
// Precondition: none ( left CAN be null )
// Postcondition: sets this.left to the new subtree,
// returns a reference to the old left subtree
public BinaryTree setLeft( BinaryTree left ) {
BinaryTree temp = this.left;
this.left = left;
return temp;
}
// method which update the right subtree
// Precondition: none ( right CAN be null )
// Postcondition: sets this.right to the new subtree,
// returns a reference to the old right subtree
public BinaryTree setRight( BinaryTree right ) {
BinaryTree temp = this.right;
this.right = right;
return temp;
}
//toString method -------------------------------------------------------
// returns a String representation of the BinaryTree
// Precondition: none
// Postcondition: returns a string representation of the BinaryTree
public String toString() {
String sLeft = "";
String sRight = "";
String answer = new String();
//get the left tree's string representation (if it exists)
if( !(left == null) ) { sLeft = left.toString(); }
//get the right tree's string representation (if it exists)
if( !(right == null) ) { sRight = right.toString(); }
//assemble the string to return
answer = "(";
if( !sLeft.equals("") ) { answer += sLeft + ","; }
answer += root.toString();
if( !sRight.equals("") ) { answer += "," + sRight; }
answer += ")";
//return the assembled string
return answer;
}
//misc methods ----------------------------------------------------------
// method to check if the current node is a leaf
// Precondition: none
// Postcondition: returns true if the current node is a leaf, and false
// in any other case
public boolean isLeaf() {
if( (left == null) && (right == null) ) { return true; }
return false;
}
// method to find the size of the tree
// Precondition: none
// Postcondition: returns the size of the tree
public int size() {
int answer=1; // 1 for the node we are at
if( !(left == null) ) { answer += left.size(); }
if( !(right == null) ) { answer += right.size(); }
return answer;
}
// method to calculate the height of the tree
// Precondition: none
// Postcondition: returns the height of the tree
public int height() {
if( this.isLeaf() ) { return 0; }
int l=1,r=1;
l += left.height();
r += right.height();
return Math.max(l,r);
}
// method to search the tree for an object
// Precondition: object is non-null
// Postcondition: returns true if the tree contains the object,
// and false if the tree doesn't contain the object
public boolean contains( Object object ) {
if( root.equals(object) ) { return true; }
if( this.isLeaf() ) { return false; }
return left.contains(object) || right.contains(object);
}
// method to find the number of leaves in the tree
// Precondition: none
// Postcondition: returns the number of leaves in the tree
public int numLeaves() {
if( this.isLeaf() ) { return 1; }
return left.numLeaves() + right.numLeaves();
}
// method to find the number of a certain object in the tree
// Precondition: the object in non-null
// Postcondition: returns the number of the object that
// are in the tree
public int count( Object x ) {
int answer=0;
if( root.equals(x) ) { answer=1; }
if( !(left == null) ) { answer += left.count(x); }
if( !(right == null) ) { answer += right.count(x); }
return answer;
}
// method to check if the tree is full
// Precondition: none
// Postcondition: returns true if the tree is a full tree,
// and false if the tree is not a full tree
public boolean isFull() {
if( this.isLeaf() ) { return true; }
if( !(left.height() == right.height()) ) { return false; }
if( left.isFull() == false || right.isFull() == false )
return false;
return true;
}
// method to check if the tree is balanced
// Precondition: none
// Postcondition: returns true if the tree is balanced, false otherwise
public boolean isBalanced() {
}
public int pathLength() { }
public BinaryTree reverse() { }
public int level( Object x ) { }
public boolean isDisjointFrom( BinaryTree that ) { }
public boolean isValid() { }
public boolean equals( Object object ) { }
//printing methods ------------------------------------------------------
public static void preOrderPrint( BinaryTree tree ) { }
public static void postOrderPrint( BinaryTree tree ) { }
public static void levelOrderPrint( BinaryTree tree ) { }
public static void inOrderPrint( BinaryTree tree ) { }
*/
}
/*
BufferedReader kb = new BufferedReader(
new InputStreamReader(System.in));
BufferedReader br = new BufferedReader(
new InputStreamReader(
new FileInputStream(filename)));
PrintStream ps = new PrintStream(
new FileOutputStream(
new File(filename)));
*/