Database Design Concepts

Def. Let , B be sets of attributes

 ( B means each value of  determines  single value of B. (we say  determines B or B is functionally dependent on , and  is called, determinate) 

For example = {course, student SSN, semester, university}

 B = {grade}

 or B = {hour, room #}

Note that, it is possible to have two or more values of  determine only one value of B.  However, it is not possible to have a single value of A that determines more than one value of B.

The textbook uses a graphical representation of functional dependency as shown in Figures 5.2 and 5.3 

zipcode (state

street, city, state  (zipcode.

A key is defined as one or more attributes which uniquely identifies a single row in a relation, i.e., identifies the values of all other attributes.

A Candidate Key:  It just means a key.

Primary Key:  It is a key, which is used in indexing the relation in the storage media.

Foreign Key:  It is one or more attributes in a given relation and it is a primary key in some other relations.
Properties of dependency

If A , B,  C, and D   are sets of attributes, then we have the following properties:

i. Transitive: If A(B and B(C, then A(C

ii. Reflexive: For every subset S of A, A(S

iii. Union: If A(B and A(C, then A(BC

iv. Augmentation: If A(B, then AC(B

v. Decomposition: If A(BC, then A(B

vi. Psudo-Transitive: if A(B and CB(D, then CA(D. However the statement (If A(B and CA(D, then BC(D)is not true in general. 

vii. If K is a key of a given relation, then K(A, for every set of attributes A of the given relation.

Algorithm for Computing F+ for a given set of attributes X and a set of dependencies F.
F+= F
Add to F+ any dependency that can be derived from those dependencies already in F+

Algorithm for Computing X+ for a given set of dependencies F

X+ = X;

repeat

  old X +  = X+ ;

 for each functional dependency Y -> Z in F do

  if X+ ⊇ Y then X+ = X+ ∪Z;

until (old X+  = X+ );
Example: Given F= ssn ->Ename, 

Pnumber ->{ Pname, Plocation}, 

{ssn, Pnumber} ->Hours

Compute {ssn}+ =?, {Pnumber}+=?,

{ssn, Pnumber}+ =?

The set of all possible keys can be determined by a programmable procedure as described as follows:

 For a given application (or a relation schema) do the following steps:

1. Determine the set F of all functional dependencies using the information given in the application’s description. Let A be the set of all attributes. 

2. Compute the closure F+ which is defined as the largest set functional dependencies that can be derived using the preceding properties (inference rules). 

      3.  A set of attributes X is a key if and only if X(A-X is in F+ and for each subset Y of X, 

           Y(X is not in F+.

First Normal Form (1NF)

A relation is in 1NF if each attribute is a simple data structure, for example, string, integer, Boolean.  Also, a composite data structure is possible if we are not interested in performing  update, insert, delete or search  based the data structure’s components.

In general, the first normal form has the following problems:

- redundancy: In Figure 1, the fee of the same activity is recorded more than one time. 

- insertion anomaly: In Figure 1, suppose the fee of Swimming has changed to $70 and a new student sign up for this activity, the new table will show two different fees for the same activity, inconsistent data. 

-deletion anomaly: In Figure 1, If you delete the first row, you loss the information about the fee of Skiing.

-update anomaly: very much similar to insertion anomaly.

Some Anomalies can be avoided by using null value for some attributes.  However, the null value for a primary key or any key could cause serious problems. 

To avoid the problems with 1NF, the 2NF was introduced defined as follows: 

A relation(or relation schema) is in 2NF if it is in 1NF and has no partial dependency.  

A dependency  ( B is called partial dependency if B is not a subset of A( i.e. non-trivial 

dependency) and A is a proper  subset of some key for the relation schema..

For a given relation schema, a prime attribute is an attribute that is part of some key. A none-prime attribute is an attribute that is not part of any key.

       There is another definition for the 2NF: A relation schema is in 2NF if no non-prime attributes are partially dependent on any key of the schema.

For example, the relation (SID, Activity, Fee) of Figure 1 is in (1NF), However, it is not in 2NF because                                         SID, Activity ( Fee

Activity ( Fee

          Figure 1.

	SID
	Activity
	Fee

	100
	Skiing
	200

	100
	Golf
	65

	150
	Swimming
	50

	175
	Squash
	50

	175
	Swimming
	50

	200
	Swimming
	50

	200
	Golf
	65

	
	
	


The relation of Figure 1 can be decomposed into two relations (SID, Activity), (Activity, Fee) both in 2NF as shown in Figure 2. 

Figure 2.

	SID
	Activity

	100
	Skiing

	150
	Swimming

	175
	Squash

	200
	Swimming


	Activity
	Fee

	Skiing
	200

	Swimming
	50

	Squash
	50

	
	


Sometimes relations in 2NF have also some problems related to anomaly.  For this reason, the 3NF was introduced. A relation is in 3NF if it is in 2NF and has no transitive dependencies.  A transitive dependency means  ( B ( , where , B,  are groups of attributes.  For example, in Figure 3, we have the relation Housing (SID, Building, Fee)                                                      

SID ( Building ( Fee

Thus, this relation is not in 3NF).  As shown in Figure 3(b), it could be decomposed into two relations (SID, building) and Building, Fee) both in 3NF.

There is another def. of 3NF stating that a given relation is in (3NF) if A ( B implies at least one of the following:

i – B ( 
ii –  is a key of the given relation

iii – Each attribute in B –  is contained in a key of the given relation.
Figure 3. The relation Housing and its 3NF decomposition. 

            Elimination of Transitive Dependency: 

(a)
Relation with Transitive Dependency and

(b)
Relation Eliminating the Transitive Dependency                                   

	SID
	Building
	Fee

	100
	Randolph
	1200

	150
	Ingersoll
	1100

	200
	Randolph
	1200

	250
	Pitkin
	1100

	300
	Randolph
	1200


(a)
STU-HOUSING (SID, Building)
BLDG-FEE (Building, Fee)

Key:  SID
Key:  Building

	SID
	Building
	
	Building
	Fee

	100
	Randolph
	
	Randolph
	1200

	150
	Ingersoll
	
	Ingersoll
	1100

	200
	Randolph
	
	Pitkin
	1100

	250
	Pitkin
	
	
	

	300
	Randolph
	
	
	


(b)

General Procedure for Decomposition into 3NF

1. Given a set of attributes R and a set of dependencies F.

2. Find a minimal cover G for F, i.e. F+= G+  with respect to R

3. For each dependency  ( B, in the minimal cover,  do the following:
             If , B are not together in one relation scheme (different from the original schema),
             then create a new relation (A,B) containing A and B. 

4.    If none of the created relations contains a key for the original relation scheme, then add 

        a new relation scheme that consists only the attributes of some key of the original     

        relation.

5.   If we have more than one dependency of the following forms.

 ( B1

 ( B2

:

 ( Bk

Sometimes, it is more desirable to have one relation scheme consisting (B1, (, Bk) instead of k relation schemes (B1) ( (Bk).

         END PROCEDURE

         Example:   Given the relation schema (C,T,H,R,S,G), where

	
	
	

	C =
	Course
	C ( T

	T =
	Teacher
	HR ( C

	H =
	Hour
	HT ( R

	R =
	Room #
	CS ( G

	S =
	Student
	HS ( R

	G =
	Grade
	CH ( R


First eliminate redundant dependencies, i.e., those dependencies, which could be derived from other dependencies.  For example, CH (R is redundant because it could be derived from C ( T and HT ( R.  However, HT ( R is not redundant because it cannot be derived from C ( T and CH ( R.  Now, we eliminate, CH (R and after applying the general procedure for decomposition, we get (CT), (CHR), (HRT), (CGS), and (HSR). Each one of these relation schemes is in 3NF.
The 3NF is not the best form to deal with.  For example in Figure 4, the relation advisor is in (3NF), however it still has some problem in insertion and deletion.  If a professor is not advising any student, then we cannot enter his/her name and major.  For this reason Boyce-Codd Normal Form (BCNF) was introduced:

R is in BCNF if ( B implies either B (   or   is a key( or a super key)

Figure 4.


Relation in Third Normal Form but Not in Boyce-Codd Normal Form and

ADVISOR (SID, Major, Advisor’sName)

Key (primary):  (SID, Major)

Key (candidate):  (SID, Advisor’sName)

Functional dependency:  Advisor’sName ( Major

	SID
	Major
	Advisor’s

Name

	100
	Math
	Cauchy

	150
	Psychology
	Jung

	200
	Math
	Riemann

	250
	Math
	Cuachy

	300
	Psychology
	Perls

	300
	Math
	Riemann


Figure 5. The relation Advisor has been decomposed into two relations in BCNF.

STU-ADV (SID, Advisor’sName)
ADV-SUBJ (Advisor’sName, 

                                                                                        Subject)

Key:  SID
Key:  Advisor’sName
	SID
	Advisor’sName
	
	Advisor’sName
	Subject

	100
	Cauchy
	
	Cauchy
	Math

	150
	Jung
	
	Jung
	Psychology 

	200
	Riemann
	
	Riemann
	Math

	250
	Cauchy
	
	Perls
	Psychology

	300
	Perls
	
	
	

	300
	Riemann
	
	
	

	
	
	
	
	


General Procedure for Decomposing a relation Scheme into Relation Schemes in (BCNF)

1.
Consider only non- trivial dependencies, i.e.,  ( B, B is not a subset of A, and B contains only one element.
2.
Choose a dependency that violates BCNF, i.e.,  ( B, A∩ B= empty set and A is not a key.

          Let T be the set of all attributes.

          Let X = T –  – B (set subtraction)

          Decompose the relation scheme R into (B), and ().  The scheme (B) certainly      

          satisfies BCNF, but that is not necessarily for ().

4. Repeat the same process on () until all schemes are in BCNF.

END PROCEDURE

Example:

Given the relation scheme:  (C, T, H, R, S, G)

C = Course,  T = Teacher,  H = Hour,  R = Room,  S = Student,  G = Grade

C ( T
each course has only one teacher.

HR ( C
at most one course can meet in a room and at one time.

CS ( G
each student has at most one grade in each course.

HS ( R
a student can be in only one room at one  time.

HT(R      a student can attend at most one course at a given time.

The only key for (C, T, H, R, S, G)   is the pair (H, S).
First consider the dependency CS ( G, which violates the BCNF, because CS is not a key.  We decompose the relation into the following two relations:

(C,S,G )          (C,T,H,R,S)

(C,S,G )satisfies BCNF because the only possible dependency is CS ( G and CS is a key of (C,S,G).

Now consider (C,T,H,R,S)

The only key for this relation is (H,S).  The dependencies with respect to (C,T,H,R,S) are
 C ( T, TH ( R, HR ( C, HS ( R,. Also, these dependencies are called projected dependencies for the set (C,T,H,R,S), which are basically all original dependencies that are related to the attributes (C,T,H,R,S).

Consider:  C ( T which violates the BCNF because C does not contains the key (H,S).  So we decompose the relation (C,T,H,R,S) into (C,T) and  (C,H,R,S).  (C,T )satisfies BCNF because the only dependency is C ( T and the relation contains only C and T.

Now consider (C,H,R,S):

The key (H,S), the dependencies of this schema are:

CH ( R  is violating BCNF.  This dependency is not included for (C,T,H,R,S) and 
                                  (C, T, H, R, S, G) because it can be derived from C ( T and HT ( R
HS ( R is not violating BCNF ?
HR ( C is violating BCNF

Consider HR ( C,  we decompose (C,H,R,S) into (C,H,R), (C,H,S).  Both of which satisfy BCNF. 

Thus, the original schema(C,T,H,R,S,G )can be decomposed into (C,S,G), (C,T), (C,H,R), (H,S,R), all of which satisfy BCNF.

If for the last decomposition the dependency CH ( R  is used instead of HR ( C, we get the following decomposition (C,S,G), (C,T), (C,H,R), (C,H,S), all of which satisfy BCNF.

Both decompositions have some problems because they do not preserve dependency.  To show the importance of this property, suppose that we used this decomposition in the application design and we have got the following tables.

	C
	S
	G
	
	C
	T
	
	C
	H
	R
	
	H
	S
	R

	c1
	s1
	g1
	
	c1
	t
	
	c1
	h
	r1
	
	h
	s1
	r1

	c2
	s2
	g2
	
	c2
	t
	
	c2
	h
	r2
	
	h
	s2
	r2


These relations satisfy all projected dependencies: CS(G, C ( T, HR ( C, HS ( R, i.e., those dependencies related to each of these relations.  The dependency HT ( R is not a projected dependency because it relates to two different relations.  During performing a query, it is possible to compute the join of (C,H,R) and (C,T) and we get:

	C
	H
	R
	T

	c1
	h
	r1
	t

	c2
	h
	r2
	t


This means “a teacher in two different rooms at the same time”.  In fact there is no decomposition of the relation (C,T,H,R,S,G) so that each new relation satisfies BCNF and preserve the dependencies.  However, it could be decomposed into relations each satisfies (3NFC) and preserve the dependencies and satisfies the lossless-join decomposition property.

The lossless-join decomposition is another important property for the decomposition defined as follows:  A relation schema R has lossless-join decomposition R1, R2 if for every instance (i.e. example or relation)) r of R we have:

r = (projection of r on R1) x (projection of r on R2)

Note that r is always a subset of the relation (projection of r on R1) x (projection of r on R2).
Example:

Given:  R = (branch-name, loan-name, customer-name, amount)

 R1 = (branch-name, loan-name, amount)

 R2 = (amount, customer-name)

Figure 6 shows an instance of R, R1 and R2.

r ( r1 x r2     but     r ( r1 x r2
Thus, this decomposition is lossy.

In general, the procedure for decomposition into 3NF is always preserve dependency and leads to a lossless-join decomposition.  The procedure for decomposition into BCNF is not necessarily leads to a decomposition that satisfies these two important properties.  However, there is a procedure to test if a given decomposition satisfies the property of preserve dependency, and similar procedure is also available for the lossless-join decomposition.  The last procedure is based on the following theorem.

Theorem:
The decomposition R1, R2 of R is lossless-join decomposition if and only if
 R1 ( R2 ( R1 – R2
or R1 ( R2 ( R2 – R1
Based on this theorem, we could determine that the decomposition in Figure 6 is lossy without searching for an example, i.e., for r, r1 and r2.  Since R1 ( R2 = {amount} does not imply( R1 – R2 = {branch-name, loan-name ),   and {amount} does not imply ( R2 – R1 = {customer-name}.  Thus, the decomposition Figure 6 is lossy.

Figure 6

	branch-name
	loan-name
	customer-name
	amount

	Downtown
	17
	Jones
	1000

	Redwood
	23
	Smith
	2000

	Perryridge
	15
	Hayes
	1500

	Downtown
	14
	Jackson
	1500

	Mianus
	93
	Curry
	500

	Round Hill
	11
	Turner
	900

	Pownal
	29
	Williams
	1200

	North Town
	16
	Adams
	1300

	Downtown
	18
	Johnson
	2000

	Perryridge
	25
	Glenn
	2500

	Brighton
	10
	Brooks
	2200


	branch name
	loan-number
	amount
	
	amount
	customer-name

	Downtown
	17
	1000
	
	1000
	Jones

	Redwood
	23
	2000
	
	2000
	Smith

	Perryridge
	15
	1500
	
	1500
	Hayes

	Downtown
	14
	1500
	
	1500
	Jackson

	Mianus
	93
	500
	
	500
	Curry

	Round Hill
	11
	900
	
	900
	Turner

	Pownal
	29
	1200
	
	1200
	Williams

	North Town
	16
	1300
	
	1300
	Adams

	Downtown
	18
	2000
	
	2000
	Johnson

	Perryridge
	25
	2500
	
	2500
	Glenn

	Brighton
	10
	2200
	
	2200
	Brooks


Multivalued dependency:

Given a relation r, 
 and B be attributes of r and 
 is the set of all remaining attributes of r

The multivalued dependency is defined as follows

  (( B.  A is multidetermines  iff the following conditions are satisfied

        1.     A determines multiple values of B ( i.e. a single value of A determines one or more 

         values of B)

5. A determines multiple values of , and 

6. B and  are independent of each other

The multivalued dependency exists only if the relation has at least three attributes, two of them are multivalued and their values depend on only the third attribute.  

Observation
If  (( B then ((X

If A(B then  (( B

The following illustrates the meaning of multivalued dependency. If the rows t1 and t2 are exist in r, then the rows t3 and t4 must be exist in r.

	
	Attributes A
	Attributes B
	Attributes X

	Row  t1 of r
	a
	b1
	x1

	Row t2 of r
	a
	b2
	x2

	Row t3 of  r
	a
	b1
	x2

	Row  t4 of r
	a
	b2
	x1


Fourth Normal Form:

A given relation r is in 4th normal form

 if for every  (( B , then either:
i)
B (  or

ii)
 is a key or super key.

Example:
In Figure 7, we have
 CT (( HR and since CT is not a key, then CTHRSG is not in 4NF.
Figure 7:

	C
	T
	H
	R
	S
	G

	CS101
	Deadwood, J.
	M9
	222
	Klunk, A.
	B+

	CS101
	Deadwood, J.
	W9
	333
	Klunk, A.
	B+

	CS101
	Deadwood, J.
	F9
	222
	Klunk, A.
	B+

	CS101
	Deadwood, J.
	M9
	222
	Zonker, B.
	C

	CS101
	Deadwood, J.
	W9
	333
	Zonker, B.
	C

	CS101
	Deadwood, J.
	F9
	222
	Zonker, B.
	C


A sample relation for scheme CTHRSG.

Example:
In Figure 8, we have:
Student (SID, Major, Activity)

SID (( Major

SID ( Activity

Note the relation is in BCNF because there is no functionally dependency except the trivial one. A functionally dependency A (B is trivial if B⊆ A. However, the relation student still has insertion anomalies as shown in Figure 6.  To eliminate these problems, we make use of the multivalued dependency SID (( Major in applying a decomposition procedure similar to that one used for (BCNF).  That procedure leads to the decomposition (SID, Major), (SID, Activity).  Each one of these two relations is in (4NF).
Figure 8:

STUDENT (SID, Major, Activity)

Key:  (SID, Major, Activity)

Multivalued dependencies:  SID (( Major

 SID ((  Activity

	SID
	Major
	Activity

	100
	Music
	Swimming

	100
	Accounting
	Swimming

	100
	Music
	Tennis

	100
	Accounting
	Tennis

	150
	Math
	Jogging


STUDENT Relations with Insertion Anomalies:

(a)
Insertion of a Single Tuple and

(b)
Insertion of Two Tuples

STUDENT (SID, Major, Activity)

Key:  (SID, Major, Activity)

	SID
	Major
	Activity

	100
	Music
	Skiing

	100
	Music
	Swimming

	100
	Accounting
	Swimming

	100
	Music
	Tennis

	100
	Accounting
	Tennis

	150
	Math
	Jogging


(a)

	SID
	Major
	Activity

	100
	Music
	Skiing

	100
	Accounting
	Skiing

	100
	Music
	Swimming

	100
	Accounting
	Swimming

	100
	Music
	Tennis

	100
	Accounting
	Tennis

	150
	Math
	Jogging


(b)

Elimination of Multivalued Dependency:

	SID
	Major
	
	SID
	Activity

	100
	Music
	
	100
	Skiing

	100
	Accounting
	
	100
	Swimming

	150
	Math
	
	100
	Tennis

	
	
	
	150
	Jogging
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