Subversion Repositories programming

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
352 ira 1
\documentclass[12pt,letterpaper]{report}
2
\parindent 0cm % don't bother with \noindent all the time!
3
\parskip 1ex
4
 
5
\usepackage{amsmath}
6
\usepackage{exscale}
7
 
8
% draws means
9
\newcommand{\Xbar}{\overline{X}}
10
\newcommand{\xbar}{\overline{x}}
11
 
12
\begin{document}
13
\sffamily % sans-serif font
14
 
15
\title{STA-326-02 Final}
16
\author{Ira W. Snyder}
17
\date{2006-06-06}
18
 
19
\maketitle
20
 
21
\section*{Chapter 5, Problem 108}
22
 
23
If the probability of a random variable is given by
24
 
25
\begin{equation*}
26
 f(x)=
27
\begin{cases}
28
 k(1-x^2) & \text{for $0<x<1$}\\
29
 
30
\end{cases}
31
\end{equation*}
32
 
33
find the value of $k$ and the probabilities that a random variable having this probability density will take on a value
34
 
35
\begin{enumerate}
36
 \item[(a)] between $0.1$ and $0.2$
37
 \item[(b)] greater than $0.5$.
38
\end{enumerate}
39
 
40
\subsection*{Finding $k$}
41
 
42
The definition of a probability density function states that
43
 
44
\begin{equation*}
45
 \int_{-\infty}^\infty f(x)\mathrm{d}x=1
46
\end{equation*}
47
 
48
For this problem, we can split this integral into 3 parts, then solve for $k$.
49
 
50
\begin{align}
51
 \int_{-\infty}^0 0\mathrm{d}x = 0\\
52
 \int_0^1 k(1-x^2)\mathrm{d}x = 1\\
53
 \int_1^\infty 0\mathrm{d}x = 0
54
\end{align}
55
 
56
We can ignore integrals 1 and 3, since they are both equal to zero. We will concentrate on integral 2.
57
 
58
To solve for $k$, we will first find the indefinite integral of $k(1-x^2)$.
59
 
60
\begin{align*}
61
 \begin{split}
62
  \int k(1-x^2) \mathrm{d}x & = k \int (1-x^2) \mathrm{d}x\\
63
                            & = k (x - \frac{x^3}{3})
64
 \end{split}
65
\end{align*}
66
 
67
Now we can easily solve for k on the interval (0,1) using the indefinite integral of integral 2, above.
68
 
69
\begin{align*}
70
 \begin{split}
71
  k (x - \frac{x^3}{3}) \Big|_0^1 & = k (1-\frac{1}{3}) - k (0-\frac{0}{3})\\
72
                                  & = \frac{2k}{3}
73
 \end{split}
74
\intertext{Which is easily solved to give}
75
 k = \frac{3}{2}
76
\end{align*}
77
 
78
\subsection*{Part a}
79
 
80
Now, to find the probability that a random variable having this probability density will take on a value between $0.1$ and $0.2$, we can integrate the original equation, using the value for $k$ that we just found.
81
 
82
\begin{align*}
83
 \begin{split}
84
  \int_{0.1}^{0.2} \frac{3}{2} (1-x^2) \mathrm{d}x & = \frac{3}{2} \int_{0.1}^{0.2} (1-x^2) \mathrm{d}x\\
85
                                                   & = \frac{3}{2} \left(x - \frac{x^3}{3}\right) \Big|_{0.1}^{0.2}\\
86
                                                   & = \frac{3}{2} \left(({0.2} - \frac{{0.2}^3}{3}) - ({0.1} - \frac{{0.1}^3}{3})\right)\\
87
                                                   & = \frac{3}{2} (0.976667)\\
88
                                                   & = 0.1465
89
 \end{split}
90
\end{align*}
91
 
92
\subsection*{Part b}
93
 
94
A process very similar to what we just did can be used to solve this part as well. Since we want to find the area under the curve that is greater than $0.5$, we integrate from $0.5$ to $1$.
95
 
96
\begin{align*}
97
 \begin{split}
98
  \int_{0.5}^1 \frac{3}{2} (1-x^2) \mathrm{d}x & = \frac{3}{2} \int_{0.5}^1 (1-x^2) \mathrm{d}x\\
99
                                               & = \frac{3}{2} \left((x - \frac{x^3}{3}) \Big|_{0.5}^1\right)\\
100
                                               & = \frac{3}{2} \left((1 - \frac{1^3}{3}) - ({0.5} - \frac{{0.5}^3}{3})\right)\\
101
                                               & = \frac{3}{2} \left(\frac{2}{3} - 0.45833\right)\\
102
                                               & = 0.3125
103
 \end{split}
104
\end{align*}
105
 
106
\section*{Chapter 5 Problem 116}
107
 
108
The probability density shown in Figure 5.6 is the log-normal distribution with $\alpha = 8.85$ and $\beta = 1.03$. Find the probability that
109
\begin{enumerate}
110
 \item[(a)] the interrequest time is more than $200$ microseconds
111
 \item[(b)] the interrequest time is less than $300$ microseconds
112
\end{enumerate}
113
 
114
\subsection*{Part a}
115
 
116
The log-normal function is given by the probability density function
117
 
118
\begin{equation*}
119
 f(x) = 
120
 \begin{cases}
121
  \frac{1}{\sqrt{2\pi}\beta} x^{-1}e^{-(\mathrm{ln}\ x - \alpha)^2 / 2\beta^2} & \text{for $x > 0$, $\beta > 0$}\\
122
 
123
 \end{cases}
124
\end{equation*}
125
 
126
The book tells us on page 167 that to find the probability that a random variable will take on a value between $a$ and $b$ for $(0 < a < b)$, we must evaluate the integral
127
 
128
\begin{equation*}
129
 \int_a^b \frac{1}{\sqrt{2\pi}\beta} x^{-1}e^{-(\mathrm{ln}\ x - \alpha)^2 / 2\beta^2} \mathrm{d}x
130
\end{equation*}
131
 
132
Which the book then simplifies to
133
 
134
\begin{equation*}
135
 F\left(\frac{\mathrm{ln}\ b - \alpha}{\beta}\right) - F\left(\frac{\mathrm{ln}\ a - \alpha}{\beta}\right)
136
\end{equation*}
137
 
138
where $F$ is the distribution function of the standard normal distribution.
139
 
140
Using the information above, we can figure out the correct values of $a$ and $b$, and then plug in and solve directly.
141
 
142
Since we want to find the probability that the interrequest time is greater than $200$ microseconds, we must solve using limits $a = 200$ and $b = \infty$. Plugging these in, we get
143
 
144
\begin{equation*}
145
 \begin{split}
146
  F\left(\frac{\mathrm{ln}\ \infty - 8.85}{1.03}\right) - F\left(\frac{\mathrm{ln}\ 200 - 8.85}{1.03}\right) & = F(\infty) - F(-3.45)\\
147
                                                                                       & = 1 - 0.0003\\
148
                                                                                       & = 0.9997
149
 \end{split}
150
\end{equation*}
151
 
152
\subsection*{Part b}
153
 
154
This part can be solved in a similar way to Part a above. The only difference is using different values for $a$ and $b$. Since the log-normal distribution is only valid for $x > 0$, we use $a = 0$ and $b = 300$. Using the book's equation from above, we get
155
 
156
\begin{equation*}
157
 \begin{split}
158
  F\left(\frac{\mathrm{ln}\ 300 - 8.85}{1.03}\right) - F\left(\frac{\mathrm{ln}\ 0 - 8.85}{1.03}\right) & = F(-3.05) - F(-\infty)\\
159
                                                                                  & = 0.0011 - 0.0\\
160
                                                                                  & = 0.0011
161
 \end{split}
162
\end{equation*}
163
 
164
\section*{Chapter 6 Problem 36}
165
 
166
If measurements of the specific gravity of a metal can be looked upon as a sample from a normal population having a standard deviation of $0.04$, what is the probability that the mean of a random sample of size $25$ will be ``off'' by at most $0.02$?
167
 
168
\subsection*{Solution}
169
 
170
From the given information in the problem, we know the following information
171
 
172
\begin{align*}
173
 \sigma & = 0.04\\
174
 n & = 25
175
\end{align*}
176
 
177
So now we find $z$, which is the standardized normal value. Basically, $z$ is a way to convert any normal distribution to a value that we can read off of the standard normal distribution table, which is Table 3.
178
 
179
\begin{equation*}
180
 \begin{split}
181
  z = \frac{\Xbar - \mu}{\sigma / \sqrt{n}} & = \frac{\pm 0.02}{0.04 / \sqrt{25}}\\
182
                                            & = \pm 2.5
183
 \end{split}
184
\end{equation*}
185
 
186
Now we need to find the area underneath the standard normal curve, on the interval $(-2.5,2.5)$. To do this, we can look up the values from Table 3 and subtract.
187
 
188
\begin{align*}
189
 F(-2.5) & = 0.0062\\
190
 F(2.5) & = 0.9938
191
\end{align*}
192
 
193
Now, we can subtract $F(-2.5)$ from $F(2.5)$ to get the probability that the mean of a random sample of size $25$ will be ``off'' by at most $0.02$.
194
 
195
\begin{equation*}
196
 F(2.5) - F(-2.5) = 0.9938 - 0.0062 = 0.9876
197
\end{equation*}
198
 
199
\section*{Chapter 6 Problem 42}
200
 
201
Explain why the following may not lead to random samples from the desired populations:
202
 
203
\begin{enumerate}
204
 \item[(a)] To determine the smoothness of shafts, a manufacturer measures the roughness of the first piece made each morning.
205
 \item[(b)] To determine the mix of cars, trucks, and buses in the rush hour, an engineer records the type of vehicle passing a fixed point at 1-minute intervals.
206
\end{enumerate}
207
 
208
\subsection*{Part a}
209
 
210
This may not lead to a random sample since since the machine making the shafts could produce a very rough first shaft, but produce much smoother shafts after it has warmed up.
211
 
212
\subsection*{Part b}
213
 
214
This may not lead to a random sample, since trucks and buses are longer than cars. This would mean that trucks and buses are more likely to get included, since they take longer to pass the sensor. This is explained in an example using logs on Page 205 in the book.
215
 
216
\section*{Chapter 7 Problem 80}
217
 
218
While performing a certain task under simulated weightlessness, the pulse rate of 32 astronaut trainees increased on the average by 26.4 beats per minute with a standard deviation of 4.28 beats per minute. What can one assert with 95\% confidence about the maximum error if $x = 26.4$ is used as a point estimate of the true average increase in the pulse rate of astronaut trainees performing the given task.
219
 
220
\subsection*{Solution}
221
 
222
We can easily solve this problem using the definition of the Maximum Error of Estimate, from Page 229 in the book
223
 
224
\begin{equation*}
225
 E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}
226
\end{equation*}
227
 
228
We know the following information
229
 
230
\begin{align*}
231
 n & = 32\\
232
 \sigma & = 4.28\\
233
 \alpha & = 0.05
234
\end{align*}
235
 
236
The only one that is not directly given in the problem is $\alpha$, but it can easily be derived from the 95\% figure that is given. It is the area outside of the 95\% confidence range, which must be 5\%. In probability form, this is 0.05. The book provides us with estimates of $z_{\alpha/2}$ for very common confidence ranges. It tells us that for $\alpha = 0.05$, $z_{\alpha/2} = 1.96$.\\
237
 
238
So, using this information, we plug in and solve
239
 
240
\begin{equation*}
241
 \begin{split}
242
  E & = 1.96 \cdot \frac{4.28}{\sqrt{32}}\\
243
    & = 1.483
244
 \end{split}
245
\end{equation*}
246
 
247
What this information is telling us is that we can be sure that for 95\% of the astronauts trainees in the program, their heart rate will increase by $26.4 \pm 1.483$ beats per minute while they are performing the task.
248
 
249
\section*{Chapter 7 Problem 94}
250
 
251
In an air-pollution study, ozone measurements were taken in a large California city at 5:00 PM. The eight readings (in parts per million) were:
252
 
253
\begin{center}
254
 7.9\ \ 11.3\ \ 6.9\ \ 12.7\ \ 13.2\ \ 8.8\ \ 9.3\ \ 10.6
255
\end{center}
256
 
257
Assuming the population sampled is normal, construct a 95\% confidence interval for the corresponding true mean.
258
 
259
\subsection*{Solution}
260
 
261
From this information, we know, or can very easily find, four things
262
 
263
\begin{equation*}
264
 n = 8
265
\end{equation*}
266
 
267
\begin{equation*}
268
 \xbar = \left(\sum_{k=1}^n x_k\right) = \left(\sum_{k=1}^8 x_k\right) = \frac{80.7}{8} = 10.0875
269
\end{equation*}
270
 
271
\begin{equation*}
272
 \begin{split}
273
  s^2 & = \frac{n \cdot \sum_{i=1}^n x_i^2 - \left( \sum_{i=1}^n x_i \right)^2}{n (n-1)}\\
274
      & = \frac{8 \cdot \sum_{i=1}^8 x_i^2 - \left( \sum_{i=1}^8 x_i \right)^2}{8 (8-1)}\\
275
      & = \frac{8 \cdot \sum_{i=1}^8 x_i^2 - \left( \sum_{i=1}^8 x_i \right)^2}{8 (8-1)}\\
276
      & = \frac{8 (848.16) - 6496.36}{8 \cdot 7}\\
277
      & = 5.16
278
 \end{split}
279
\end{equation*}
280
 
281
Which means that $s = \sqrt{s^2} = \sqrt{5.16} = 2.2714$.
282
 
283
And the level of significance, $\alpha = 0.05$.
284
 
285
We can use $\alpha$ to look up the value $t_{\alpha/2}$ in Table 4 of the $t$ distribution. We will use $\nu = n -1$ degrees of freedom.
286
 
287
\begin{equation*}
288
 t_{\alpha/2} = t_{0.05/2} = t_{0.025} = 2.365
289
\end{equation*}
290
 
291
Now we can use the equation for small sample confidence interval for $\mu$ from Page 233 in the book. It is
292
 
293
\begin{equation*}
294
 \xbar - t_{\alpha/2} \cdot \frac{s}{\sqrt{n}} < \mu < \xbar + t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}
295
\end{equation*}
296
 
297
Substituting in the values we found earlier, we get
298
 
299
\begin{equation*}
300
 \begin{split}
301
  10.0875 - 2.365 \cdot \frac{2.2714}{\sqrt{8}} <\ & \mu\ < 10.0875 + 2.365 \cdot \frac{2.2714}{\sqrt{8}}\\
302
  10.0875 - 1.899 <\ & \mu\ < 10.0875 + 1.899\\
303
  8.1885 <\ & \mu\ < 11.9865
304
 \end{split}
305
\end{equation*}
306
 
307
 
308
\section*{Chapter 8 Problem 18}
309
 
310
With reference to the example on page 250, construct a 95\% confidence interval for the true standard deviation of the breaking strength of the given kind of ribbon.
311
 
312
\subsection*{Example from Page 250}
313
 
314
The specifications for a certain kind of ribbon call for a mean breaking strength of 180 pounds. Five pieces of the ribbon (randomly selected from different rolls) have a mean breaking strength of 169.5 pounds with a standard deviation of 5.7 pounds.
315
 
316
\subsection*{Solution}
317
 
318
From the information given, we know the following three things
319
 
320
\begin{align*}
321
 \xbar & = 169.5\ \text{pounds}\\
322
 s & = 5.7\ \text{pounds}\\
323
 \alpha & = 0.05
324
\end{align*}
325
 
326
From this we can find $\chi_{\alpha/2}^2$ and $\chi_{1-\alpha/2}^2$ by using Table 5, and setting\\
327
$\nu = n - 1 = 4$.
328
 
329
\begin{align*}
330
 \begin{split}
331
  \chi_{\alpha/2}^2 & = \chi_{0.025}^2 = 11.143\\
332
  \chi_{1-\alpha/2}^2 & = \chi_{0.975}^2 = 0.484
333
 \end{split}
334
\end{align*}
335
 
336
 
337
To solve this problem, we will use the book's formula from Page 283 for the Confidence interval for $\sigma^2$. This is reproduced below
338
 
339
\begin{equation*}
340
 \frac{(n-1)s^2}{\chi_{\alpha/2}^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}
341
\end{equation*}
342
 
343
Now we can plug in and solve
344
 
345
\begin{equation*}
346
 \begin{split}
347
  \frac{(5-1)5.7^2}{11.143} & < \sigma^2 < \frac{(5-1)5.7^2}{0.484}\\
348
  11.663 & < \sigma^2 < 268.51
349
 \end{split}
350
\end{equation*}
351
 
352
Now we can square root the whole thing to find the confidence interval for $\sigma$ instead of $\sigma^2$.
353
 
354
\begin{equation*}
355
 3.415 < \sigma < 16.386
356
\end{equation*}
357
 
358
\section*{Chapter 8 Problem 24}
359
 
360
With reference to Exercise 7.69, use the 0.02 level of significance to test the assumption that the two populations have equal variances.
361
 
362
\subsection*{Exercise 7.69}
363
 
364
The follwing are the number of sales which a sample of 9 salespeople of industrial chemicals in California and a sample of 6 salespeople of industrial chemicals in Oregon made over a certain fixed period of time:
365
 
366
\begin{flushleft}
367
 \hspace{2cm} \textsl{California:} 59\ 68\ 44\ 71\ 63\ 46\ 69\ 54\ 48\\
368
 \hspace{2cm} \textsl{Oregon:} \hspace{6pt} 50\ 36\ 62\ 52\ 70\ 41
369
\end{flushleft}
370
 
371
\subsection*{Solution}
372
 
373
To solve this problem we will use the Statistic for test of equality of two variances (normal populations). This is reproduced below
374
 
375
\begin{equation*}
376
 F = \frac{S_1^2}{S_2^2}
377
\end{equation*}
378
 
379
$F$ is a random variable having the $F$ distribution with $n_1 - 1$ and $n_2 - 1$ degrees of freedom.\\
380
 
381
The next thing we must do is find the two sample variances. We will use the formula from Page 31, reproduced below
382
 
383
\begin{equation*}
384
 s^2 = \frac{\sum_{i=1}^n (x_i - \xbar)^2}{n-1}
385
\end{equation*}
386
 
387
Using this formula, we get the following two sample variances
388
 
389
\begin{align*}
390
 s_1^2 & = 109\\
391
 s_2^2 & = 160.97
392
\end{align*}
393
 
394
Now we can find $F$ using the two sample variations we just found
395
 
396
\begin{equation*}
397
 F = \frac{109}{160.97} = 0.677
398
\end{equation*}
399
 
400
Now, we are trying to test the following two hypotheses with the level of significance $\alpha = 0.02$, as given in the problem.
401
 
402
\begin{align*}
403
 H_0 \hspace{1cm} \sigma_1^2 & = \sigma_2^2\\
404
 H_a \hspace{1cm} \sigma_1^2 & \not= \sigma_2^2
405
\end{align*}
406
 
407
The book, on page 287, states that we can reject the null hypothesis $H_0$ if we can show that $F > F_{\alpha/2}(n_1-1, n_2-1)$. Since we found $F$ above, all we need to do now is calculate the right-hand side of the inequality. This can be looked up in Table 6(b).
408
 
409
\begin{equation*}
410
 F_{\alpha/2}(n_1-1, n_2-1) = F_{0.01}(8, 5) = 10.29
411
\end{equation*}
412
 
413
Now, we can compare and decide whether or not to reject the null hypothesis $H_0$.
414
 
415
\begin{equation*}
416
 0.677 \not> 10.29
417
\end{equation*}
418
 
419
Therefore we can not reject the null hypothesis $H_0$. This means that we can be 98\% sure that the two populations have equal variances.
420
 
421
\section*{Chapter 9 Problem 52}
422
 
423
With reference to exercise 9.51, test the null hypothesis $p = 0.20$ versus the alternative hypothesis $p < 0.20$ at the $0.05$ level of significance.
424
 
425
\subsection*{Exercise 9.51}
426
 
427
In a sample of 100 ceramic pistons made for an experimental diesel engine, 18 were cracked. Construct a 95\% confidence interval for the true proportion of cracked pistons.
428
 
429
\subsection*{Solution}
430
 
431
From the information given, we have the following information
432
 
433
\begin{align*}
434
 n & = 100\\
435
 X & = 18\\
436
 \alpha & = 0.05
437
\end{align*}
438
 
439
We also know the hypotheses that we are trying to determine
440
 
441
\begin{align*}
442
 H_0 \hspace{1cm} p & = 0.20\\
443
 H_a \hspace{1cm} p & < 0.20\\
444
\end{align*}
445
 
446
Now, since we have a large sample ($n = 100$) we can use the Statistic for large sample test concerning $p$ from Page 299 in the book. It is reproduced here
447
 
448
\begin{equation*}
449
 Z = \frac{X - np_0}{\sqrt{np_0(1-p_0)}}
450
\end{equation*}
451
 
452
Now we can plug in and solve. Keep in mind that $p_0$ is the value of $p$ from the null hypothesis $H_0$.
453
 
454
\begin{equation*}
455
 \begin{split}
456
  Z & = \frac{X - np_0}{\sqrt{np_0(1-p_0)}}\\
457
    & = \frac{18 - 100 \cdot 0.20}{\sqrt{100 \cdot 0.20 (1 - 0.20)}}\\
458
    & = -0.5
459
 \end{split}
460
\end{equation*}
461
 
462
The book states that we can reject the null hypothesis $H_0$ if $Z < -z_\alpha$. We will now look up $z_\alpha$ from Table 3.
463
 
464
\begin{equation*}
465
 z_\alpha = z_{0.05} = 1.645
466
\end{equation*}
467
 
468
Now, all that is left to do is to perform the comparison
469
 
470
\begin{equation*}
471
 -(-0.5) < 1.645
472
\end{equation*}
473
 
474
Since this is true, we can reject the null hypothesis $H_0$. This means that we can be 95\% sure that $p \not= 0.20$.
475
 
476
\section*{Chapter 9 Problem 54}
477
 
478
With reference to exercise 9.53, test the null hypothesis $p = 0.18$ versus the alternative hypothesis $p \not= 0.18$ at the 0.01 level of significance.
479
 
480
\subsection*{Exercise 9.53}
481
 
482
In a random sample of 160 workers exposed to a certain amount of radiation, 24 exerienced some ill effects. \ldots
483
 
484
\subsection*{Solution}
485
 
486
From the information given in the problem we have the following information
487
 
488
\begin{align*}
489
 n & = 160\\
490
 X & = 24\\
491
 \\
492
 H_0 \hspace{1cm} p & = 0.18\\
493
 H_a \hspace{1cm} p & \not= 0.18\\
494
 \alpha & = 0.01
495
\end{align*}
496
 
497
To complete this problem, we will use the Statistic for large sample test concerning $p$, from page 299 in the book, which is reproduced below
498
 
499
\begin{equation*}
500
 Z = \frac{X - np_0}{\sqrt{np_0(1-p_0)}}
501
\end{equation*}
502
 
503
So now we can solve for $Z$, which we will use later, in a comparison to see if we can reject the null hypothesis $H_0$
504
 
505
\begin{equation*}
506
 \begin{split}
507
  Z & = \frac{X - np_0}{\sqrt{np_0(1-p_0)}}\\
508
    & = \frac{24 - 160 \cdot 0.18}{\sqrt{160 \cdot 0.18 (1-0.18)}}\\
509
    & = \frac{4.92}{4.86}\\
510
    & = 1.0124
511
 \end{split}
512
\end{equation*}
513
 
514
Now the only thing remaining is to test the hypothesis itself. The book states, on Page 299, that we will reject the null hypothesis if one or both of the following conditions are true
515
 
516
\begin{equation*}
517
 \begin{split}
518
  Z & < -z_{\alpha/2}\\
519
  Z & > z_{\alpha/2}
520
 \end{split}
521
\end{equation*}
522
 
523
Now we will find $-z_{\alpha/2}$ and $z_{\alpha/2}$ so we can complete the comparison. We will find these by looking them up in Table 3.
524
 
525
\begin{equation*}
526
 \begin{split}
527
  -z_{\alpha/2} & = -2.576\\
528
  z_{\alpha/2} & = 2.576
529
 \end{split}
530
\end{equation*}
531
 
532
And now we perform the comparison
533
 
534
\begin{equation*}
535
 \begin{split}
536
  Z = 1.0124 & \not< -2.576 = -z_{\alpha/2}\\
537
  Z = 1.0124 & \not> 2.576 = z_{\alpha/2}
538
 \end{split}
539
\end{equation*}
540
 
541
Since at least one, and in fact both, of the comparisons are false, we can reject the null hypothesis $H_0$. This means that we can be 99\% confident that $p \not= 0.18$.
542
 
543
\end{document}