| 154 |
ira |
1 |
/* Copyright: Ira W. Snyder
|
|
|
2 |
* Start Date: 2005-11-13
|
|
|
3 |
* End Date: 2005-11-13
|
|
|
4 |
* License: Public Domain
|
|
|
5 |
*
|
|
|
6 |
* Changelog Follows:
|
|
|
7 |
*
|
|
|
8 |
* 2005-11-13
|
|
|
9 |
* - Implemented Functions 1-3 from the Project #3 Handout.
|
|
|
10 |
* - Implemented Algorithm 7 (LaGrange) from Notes Set #3.
|
|
|
11 |
* - Implemented Algorithm 8-9 (Newton Divided Diff) from Notes Set #3.
|
| 155 |
ira |
12 |
* - Implemented GenEvenPts() which will generate evenly spaced points.
|
|
|
13 |
* - Implemented GenChebychevPts() which will generate Chebychev points.
|
| 157 |
ira |
14 |
* - Split the Newton algorithm into two parts: NewtonMethod() and NewtonCoef().
|
| 158 |
ira |
15 |
* - Implemented brute_search_lagrange() and brute_search_newton() to find the
|
|
|
16 |
* worst values. This is taken from the Project #3 Handout.
|
|
|
17 |
* - Added each needed call to main().
|
| 154 |
ira |
18 |
*
|
| 159 |
ira |
19 |
* 2005-11-17
|
|
|
20 |
* - Changed stupid global variables used to return values from a function to
|
|
|
21 |
* a new type (called bsf_type) and use that instead. What was I thinking???
|
|
|
22 |
*
|
| 154 |
ira |
23 |
*/
|
|
|
24 |
|
|
|
25 |
#include <cstdio>
|
|
|
26 |
#include <cmath>
|
|
|
27 |
using namespace std;
|
|
|
28 |
|
| 157 |
ira |
29 |
#define MAX_POINTS 26
|
| 154 |
ira |
30 |
|
| 159 |
ira |
31 |
// A convienent brute-force-search return type
|
|
|
32 |
typedef struct { double absmax, xsave; } bsf_type;
|
| 157 |
ira |
33 |
|
| 155 |
ira |
34 |
/**
|
|
|
35 |
* Function #1 from the Project #3 Handout.
|
|
|
36 |
*
|
|
|
37 |
* @param x the place to calculate the value of this function
|
|
|
38 |
* @return the value of the function at x
|
|
|
39 |
*/
|
| 154 |
ira |
40 |
double func1 (double x)
|
|
|
41 |
{
|
|
|
42 |
return 1.0 / (1.0 + pow(x, 2));
|
|
|
43 |
}
|
|
|
44 |
|
| 155 |
ira |
45 |
/**
|
|
|
46 |
* Function #2 from the Project #3 Handout.
|
|
|
47 |
*
|
|
|
48 |
* @param x the place to calculate the value of this function
|
|
|
49 |
* @return the value of the function at x
|
|
|
50 |
*/
|
| 154 |
ira |
51 |
double func2 (double x)
|
|
|
52 |
{
|
|
|
53 |
// NOTE: M_E is the value of e defined by the math.h header
|
|
|
54 |
return (pow(M_E, x) + pow(M_E, -x)) / 2.0;
|
|
|
55 |
}
|
|
|
56 |
|
| 155 |
ira |
57 |
/**
|
|
|
58 |
* Function #3 from the Project #3 Handout.
|
|
|
59 |
*
|
|
|
60 |
* @param x the place to calculate the value of this function
|
|
|
61 |
* @return the value of the function at x
|
|
|
62 |
*/
|
| 154 |
ira |
63 |
double func3 (double x)
|
|
|
64 |
{
|
|
|
65 |
return pow(x, 14) + pow(x, 10) + pow(x, 4) + x + 1;
|
|
|
66 |
}
|
|
|
67 |
|
| 155 |
ira |
68 |
/**
|
|
|
69 |
* Find the value of the LaGrange Interpolating Polynomial at a point.
|
|
|
70 |
*
|
|
|
71 |
* @param x the x[i] values
|
|
|
72 |
* @param y the y[i] values
|
|
|
73 |
* @param n the number of points
|
|
|
74 |
* @param point the point to evaluate at
|
|
|
75 |
* @return the value of the Interpolating Poly at point
|
|
|
76 |
*/
|
| 154 |
ira |
77 |
double LaGrangeMethod (double *x, double *y, int n, double point)
|
|
|
78 |
{
|
|
|
79 |
double value = 0;
|
|
|
80 |
double term = 0;
|
|
|
81 |
int i, j;
|
|
|
82 |
|
|
|
83 |
for (i=0; i<n; i++)
|
|
|
84 |
{
|
|
|
85 |
term = y[i];
|
|
|
86 |
|
|
|
87 |
for (j=0; j<n; j++)
|
|
|
88 |
if (i != j)
|
|
|
89 |
term *= (point - x[j])/(x[i] - x[j]);
|
|
|
90 |
|
|
|
91 |
value += term;
|
|
|
92 |
}
|
|
|
93 |
|
|
|
94 |
return value;
|
|
|
95 |
}
|
|
|
96 |
|
| 155 |
ira |
97 |
/**
|
| 157 |
ira |
98 |
* Find the Newton Coefficients.
|
|
|
99 |
* This only needs to be called once per set of x,y values.
|
| 155 |
ira |
100 |
*
|
|
|
101 |
* @param x the x[i] values
|
|
|
102 |
* @param y the y[i] values
|
| 157 |
ira |
103 |
* @param a the a[i] values will be returned here
|
| 155 |
ira |
104 |
* @param n the number of points
|
|
|
105 |
*/
|
| 157 |
ira |
106 |
void NewtonCoef (double *x, double *y, double *a, int n)
|
| 154 |
ira |
107 |
{
|
|
|
108 |
int i, j;
|
|
|
109 |
|
|
|
110 |
for (i=0; i<n; i++)
|
|
|
111 |
a[i] = y[i];
|
|
|
112 |
|
|
|
113 |
for (i=1; i<n; i++)
|
|
|
114 |
for (j=n-1; j>=i; j--)
|
|
|
115 |
a[j] = (a[j] - a[j-1]) / (x[j] - x[j-i]);
|
| 157 |
ira |
116 |
}
|
| 154 |
ira |
117 |
|
| 157 |
ira |
118 |
/**
|
|
|
119 |
* Find the value of the Newton Interpolating Polynomial at a point.
|
|
|
120 |
* The a[i]'s are found using a divided difference table.
|
|
|
121 |
*
|
|
|
122 |
* @param x the x[i] values
|
|
|
123 |
* @param y the y[i] values
|
|
|
124 |
* @param a the a[i] values (Newton Coefficients)
|
|
|
125 |
* @param n the number of points
|
|
|
126 |
* @param point the point to evaluate at
|
|
|
127 |
* @return the value of the Interpolating Poly at point
|
|
|
128 |
*/
|
|
|
129 |
double NewtonMethod (double *x, double *y, double *a, int n, double point)
|
|
|
130 |
{
|
|
|
131 |
int i;
|
| 154 |
ira |
132 |
double xterm = 1.0;
|
|
|
133 |
double value = 0.0;
|
|
|
134 |
|
|
|
135 |
for (i=0; i<n; i++)
|
|
|
136 |
{
|
|
|
137 |
value += a[i] * xterm;
|
|
|
138 |
xterm *= (point - x[i]);
|
|
|
139 |
}
|
|
|
140 |
|
|
|
141 |
return value;
|
|
|
142 |
}
|
|
|
143 |
|
| 155 |
ira |
144 |
/**
|
|
|
145 |
* Generate evenly spaced points for the function given.
|
|
|
146 |
* The algorithm is taken from the Project #3 Handout.
|
|
|
147 |
*
|
|
|
148 |
* @param num_pts the number of points
|
|
|
149 |
* @param *func the function that you want to use to find y[i]
|
|
|
150 |
* @param x[] the array that will hold the x[i] values
|
|
|
151 |
* @param y[] the array that will hold the y[i] values
|
|
|
152 |
*/
|
|
|
153 |
void GenEvenPts (int num_pts, double(*func)(double), double x[], double y[])
|
|
|
154 |
{
|
|
|
155 |
int i;
|
| 156 |
ira |
156 |
double h = 10.0 / (double)(num_pts-1);
|
| 155 |
ira |
157 |
double xtemp = -5.0;
|
|
|
158 |
|
|
|
159 |
for (i=0; i<num_pts; i++)
|
|
|
160 |
{
|
|
|
161 |
x[i] = xtemp;
|
|
|
162 |
y[i] = func(x[i]);
|
|
|
163 |
xtemp += h;
|
|
|
164 |
}
|
|
|
165 |
}
|
|
|
166 |
|
|
|
167 |
/**
|
|
|
168 |
* Generate Chebychev points for the function given.
|
|
|
169 |
* The algorithm is taken from the Project #3 Handout.
|
|
|
170 |
*
|
|
|
171 |
* @param num_pts the number of points
|
|
|
172 |
* @param *func the function that you want to use to find y[i]
|
|
|
173 |
* @param x[] the array that will hold the x[i] values
|
|
|
174 |
* @param y[] the array that will hold the y[i] values
|
|
|
175 |
*/
|
|
|
176 |
void GenChebychevPts (int num_pts, double(*func)(double), double x[], double y[])
|
|
|
177 |
{
|
|
|
178 |
int i;
|
|
|
179 |
|
|
|
180 |
for (i=0; i<num_pts; i++)
|
|
|
181 |
{
|
| 156 |
ira |
182 |
x[i] = -5.0 * cos((float)i * M_PI / (float)(num_pts-1));
|
| 155 |
ira |
183 |
y[i] = func(x[i]);
|
|
|
184 |
}
|
|
|
185 |
}
|
|
|
186 |
|
| 157 |
ira |
187 |
/**
|
|
|
188 |
* Brute-force search the Newton Interpolating Poly for the x and y values.
|
|
|
189 |
* The error calculations will be for the given function (func1, func2, or func3).
|
|
|
190 |
*
|
|
|
191 |
* @param x the x[i] values
|
|
|
192 |
* @param y the y[i] values
|
|
|
193 |
* @param n the number of points for this polynomial
|
|
|
194 |
* @param func the function to use for the error calculation
|
| 159 |
ira |
195 |
* @return a struct of the max abs error and the x value where it occurred
|
| 157 |
ira |
196 |
*/
|
| 159 |
ira |
197 |
bsf_type brute_search_newton (double *x, double *y, int n, double(*func)(double))
|
| 157 |
ira |
198 |
{
|
| 159 |
ira |
199 |
bsf_type answer;
|
|
|
200 |
answer.absmax = 0.0;
|
|
|
201 |
answer.xsave = 0.0;
|
|
|
202 |
|
| 157 |
ira |
203 |
double xval = -5.0;
|
|
|
204 |
double h = 10.0/500.0;
|
|
|
205 |
double temp, error;
|
|
|
206 |
double a[n];
|
|
|
207 |
int i;
|
|
|
208 |
|
|
|
209 |
NewtonCoef(x, y, a, n);
|
|
|
210 |
|
|
|
211 |
for (i=0; i<=500; i++)
|
|
|
212 |
{
|
|
|
213 |
temp = NewtonMethod(x, y, a, n, xval);
|
|
|
214 |
error = abs(temp - func(xval));
|
|
|
215 |
|
| 159 |
ira |
216 |
if (error > answer.absmax)
|
| 157 |
ira |
217 |
{
|
| 159 |
ira |
218 |
answer.absmax = error;
|
|
|
219 |
answer.xsave = xval;
|
| 157 |
ira |
220 |
}
|
|
|
221 |
|
|
|
222 |
xval += h;
|
|
|
223 |
}
|
| 159 |
ira |
224 |
|
|
|
225 |
return answer;
|
| 157 |
ira |
226 |
}
|
|
|
227 |
|
|
|
228 |
/**
|
|
|
229 |
* Brute-force search the LaGrange Interpolating Poly for the x and y values.
|
|
|
230 |
* The error calculations will be for the given function (func1, func2, or func3).
|
|
|
231 |
*
|
|
|
232 |
* @param x the x[i] values
|
|
|
233 |
* @param y the y[i] values
|
|
|
234 |
* @param n the number of points for this polynomial
|
|
|
235 |
* @param func the function to use for the error calculation
|
| 159 |
ira |
236 |
* @return a struct of the max abs error and the x value where it occurred
|
| 157 |
ira |
237 |
*/
|
| 159 |
ira |
238 |
bsf_type brute_search_lagrange (double *x, double *y, int n, double(*func)(double))
|
| 157 |
ira |
239 |
{
|
| 159 |
ira |
240 |
bsf_type answer;
|
|
|
241 |
answer.absmax = 0.0;
|
|
|
242 |
answer.xsave = 0.0;
|
|
|
243 |
|
| 157 |
ira |
244 |
double xval = -5.0;
|
|
|
245 |
double h = 10.0/500.0;
|
|
|
246 |
double temp, error;
|
|
|
247 |
int i;
|
|
|
248 |
|
|
|
249 |
for (i=0; i<=500; i++)
|
|
|
250 |
{
|
|
|
251 |
temp = LaGrangeMethod(x, y, n, xval);
|
|
|
252 |
error = abs(temp - func(xval));
|
|
|
253 |
|
| 159 |
ira |
254 |
if (error > answer.absmax)
|
| 157 |
ira |
255 |
{
|
| 159 |
ira |
256 |
answer.absmax = error;
|
|
|
257 |
answer.xsave = xval;
|
| 157 |
ira |
258 |
}
|
|
|
259 |
|
|
|
260 |
xval += h;
|
|
|
261 |
}
|
| 159 |
ira |
262 |
|
|
|
263 |
return answer;
|
| 157 |
ira |
264 |
}
|
|
|
265 |
|
| 158 |
ira |
266 |
/**
|
|
|
267 |
* Print a nice error line in the format we need.
|
|
|
268 |
*
|
|
|
269 |
* @param points the number of points
|
| 159 |
ira |
270 |
* @param error a struct of the max abs error and the x value where it occurred
|
| 158 |
ira |
271 |
*/
|
| 159 |
ira |
272 |
void print_error_line (int points, bsf_type error)
|
| 158 |
ira |
273 |
{
|
|
|
274 |
printf ("For %-2d Points, MAX ERROR is: %e"
|
| 159 |
ira |
275 |
" -- OCCURS at x = %e\n", points, error.absmax, error.xsave);
|
| 158 |
ira |
276 |
}
|
|
|
277 |
|
| 154 |
ira |
278 |
int main (void)
|
|
|
279 |
{
|
| 158 |
ira |
280 |
int i; // number of points
|
| 157 |
ira |
281 |
double x[MAX_POINTS];
|
|
|
282 |
double y[MAX_POINTS];
|
| 159 |
ira |
283 |
bsf_type error;
|
| 154 |
ira |
284 |
|
| 157 |
ira |
285 |
// In the following code, the correct functions are run for each of the
|
|
|
286 |
// 12 times this needs to be run.
|
|
|
287 |
|
|
|
288 |
printf ("Newton Polynomial, Equal Points, Function #1\n");
|
|
|
289 |
printf ("============================================================\n");
|
|
|
290 |
for (i=6; i<=26; i+=5)
|
|
|
291 |
{
|
| 158 |
ira |
292 |
GenEvenPts (i, &func1, x, y);
|
| 159 |
ira |
293 |
error = brute_search_newton (x, y, i, &func1);
|
|
|
294 |
print_error_line (i, error);
|
| 155 |
ira |
295 |
|
| 157 |
ira |
296 |
}
|
|
|
297 |
|
|
|
298 |
printf ("\n\n");
|
|
|
299 |
printf ("Newton Polynomial, Equal Points, Function #2\n");
|
|
|
300 |
printf ("============================================================\n");
|
|
|
301 |
for (i=6; i<=26; i+=5)
|
|
|
302 |
{
|
| 158 |
ira |
303 |
GenEvenPts (i, &func2, x, y);
|
| 159 |
ira |
304 |
error = brute_search_newton (x, y, i, &func2);
|
|
|
305 |
print_error_line (i, error);
|
| 157 |
ira |
306 |
}
|
|
|
307 |
|
|
|
308 |
printf ("\n\n");
|
|
|
309 |
printf ("Newton Polynomial, Equal Points, Function #3\n");
|
|
|
310 |
printf ("============================================================\n");
|
|
|
311 |
for (i=6; i<=26; i+=5)
|
|
|
312 |
{
|
| 158 |
ira |
313 |
GenEvenPts (i, &func3, x, y);
|
| 159 |
ira |
314 |
error = brute_search_newton (x, y, i, &func3);
|
|
|
315 |
print_error_line (i, error);
|
| 157 |
ira |
316 |
}
|
|
|
317 |
|
|
|
318 |
printf ("\n\n");
|
|
|
319 |
printf ("LaGrange Polynomial, Equal Points, Function #1\n");
|
|
|
320 |
printf ("============================================================\n");
|
|
|
321 |
for (i=6; i<=26; i+=5)
|
|
|
322 |
{
|
| 158 |
ira |
323 |
GenEvenPts (i, &func1, x, y);
|
| 159 |
ira |
324 |
error = brute_search_lagrange (x, y, i, &func1);
|
|
|
325 |
print_error_line (i, error);
|
| 157 |
ira |
326 |
}
|
|
|
327 |
|
|
|
328 |
printf ("\n\n");
|
|
|
329 |
printf ("LaGrange Polynomial, Equal Points, Function #2\n");
|
|
|
330 |
printf ("============================================================\n");
|
|
|
331 |
for (i=6; i<=26; i+=5)
|
|
|
332 |
{
|
| 158 |
ira |
333 |
GenEvenPts (i, &func2, x, y);
|
| 159 |
ira |
334 |
error = brute_search_lagrange (x, y, i, &func2);
|
|
|
335 |
print_error_line (i, error);
|
| 157 |
ira |
336 |
}
|
|
|
337 |
|
|
|
338 |
printf ("\n\n");
|
|
|
339 |
printf ("LaGrange Polynomial, Equal Points, Function #3\n");
|
|
|
340 |
printf ("============================================================\n");
|
|
|
341 |
for (i=6; i<=26; i+=5)
|
|
|
342 |
{
|
| 158 |
ira |
343 |
GenEvenPts (i, &func3, x, y);
|
| 159 |
ira |
344 |
error = brute_search_lagrange (x, y, i, &func3);
|
|
|
345 |
print_error_line (i, error);
|
| 157 |
ira |
346 |
}
|
|
|
347 |
|
|
|
348 |
printf ("\n\n");
|
|
|
349 |
printf ("Newton Polynomial, Chebychev Points, Function #1\n");
|
|
|
350 |
printf ("============================================================\n");
|
|
|
351 |
for (i=6; i<=26; i+=5)
|
|
|
352 |
{
|
| 158 |
ira |
353 |
GenChebychevPts (i, &func1, x, y);
|
| 159 |
ira |
354 |
error = brute_search_newton (x, y, i, &func1);
|
|
|
355 |
print_error_line (i, error);
|
| 157 |
ira |
356 |
}
|
|
|
357 |
|
|
|
358 |
printf ("\n\n");
|
|
|
359 |
printf ("Newton Polynomial, Chebychev Points, Function #2\n");
|
|
|
360 |
printf ("============================================================\n");
|
|
|
361 |
for (i=6; i<=26; i+=5)
|
|
|
362 |
{
|
| 158 |
ira |
363 |
GenChebychevPts (i, &func2, x, y);
|
| 159 |
ira |
364 |
error = brute_search_newton (x, y, i, &func2);
|
|
|
365 |
print_error_line (i, error);
|
| 157 |
ira |
366 |
}
|
|
|
367 |
|
|
|
368 |
printf ("\n\n");
|
|
|
369 |
printf ("Newton Polynomial, Chebychev Points, Function #3\n");
|
|
|
370 |
printf ("============================================================\n");
|
|
|
371 |
for (i=6; i<=26; i+=5)
|
|
|
372 |
{
|
| 158 |
ira |
373 |
GenChebychevPts (i, &func3, x, y);
|
| 159 |
ira |
374 |
error = brute_search_newton (x, y, i, &func3);
|
|
|
375 |
print_error_line (i, error);
|
| 157 |
ira |
376 |
}
|
|
|
377 |
|
|
|
378 |
printf ("\n\n");
|
|
|
379 |
printf ("LaGrange Polynomial, Chebychev Points, Function #1\n");
|
|
|
380 |
printf ("============================================================\n");
|
|
|
381 |
for (i=6; i<=26; i+=5)
|
|
|
382 |
{
|
| 158 |
ira |
383 |
GenChebychevPts (i, &func1, x, y);
|
| 159 |
ira |
384 |
error = brute_search_lagrange (x, y, i, &func1);
|
|
|
385 |
print_error_line (i, error);
|
| 157 |
ira |
386 |
}
|
|
|
387 |
|
|
|
388 |
printf ("\n\n");
|
|
|
389 |
printf ("LaGrange Polynomial, Chebychev Points, Function #2\n");
|
|
|
390 |
printf ("============================================================\n");
|
|
|
391 |
for (i=6; i<=26; i+=5)
|
|
|
392 |
{
|
| 158 |
ira |
393 |
GenChebychevPts (i, &func2, x, y);
|
| 159 |
ira |
394 |
error = brute_search_lagrange (x, y, i, &func2);
|
|
|
395 |
print_error_line (i, error);
|
| 157 |
ira |
396 |
}
|
|
|
397 |
|
|
|
398 |
printf ("\n\n");
|
|
|
399 |
printf ("LaGrange Polynomial, Chebychev Points, Function #3\n");
|
|
|
400 |
printf ("============================================================\n");
|
|
|
401 |
for (i=6; i<=26; i+=5)
|
|
|
402 |
{
|
| 158 |
ira |
403 |
GenChebychevPts (i, &func3, x, y);
|
| 159 |
ira |
404 |
error = brute_search_lagrange (x, y, i, &func3);
|
|
|
405 |
print_error_line (i, error);
|
| 157 |
ira |
406 |
}
|
|
|
407 |
|
| 154 |
ira |
408 |
return 0;
|
|
|
409 |
}
|
|
|
410 |
|